Step |
Hyp |
Ref |
Expression |
1 |
|
2nreu.a |
|- ( x = A -> ( ph <-> ps ) ) |
2 |
|
2nreu.b |
|- ( x = B -> ( ph <-> ch ) ) |
3 |
|
simpl1 |
|- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> A e. X ) |
4 |
|
simpl2 |
|- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> B e. X ) |
5 |
|
simprl |
|- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> ps ) |
6 |
2
|
sbcieg |
|- ( B e. X -> ( [. B / x ]. ph <-> ch ) ) |
7 |
6
|
3ad2ant2 |
|- ( ( A e. X /\ B e. X /\ A =/= B ) -> ( [. B / x ]. ph <-> ch ) ) |
8 |
7
|
biimprd |
|- ( ( A e. X /\ B e. X /\ A =/= B ) -> ( ch -> [. B / x ]. ph ) ) |
9 |
8
|
adantld |
|- ( ( A e. X /\ B e. X /\ A =/= B ) -> ( ( ps /\ ch ) -> [. B / x ]. ph ) ) |
10 |
9
|
imp |
|- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> [. B / x ]. ph ) |
11 |
5 10
|
jca |
|- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> ( ps /\ [. B / x ]. ph ) ) |
12 |
|
simpl3 |
|- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> A =/= B ) |
13 |
|
simp1 |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> A e. X ) |
14 |
|
simp2 |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> B e. X ) |
15 |
|
simp3 |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) |
16 |
|
sbcan |
|- ( [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) <-> ( [. A / x ]. ( ph /\ [ y / x ] ph ) /\ [. A / x ]. x =/= y ) ) |
17 |
|
sbcan |
|- ( [. A / x ]. ( ph /\ [ y / x ] ph ) <-> ( [. A / x ]. ph /\ [. A / x ]. [ y / x ] ph ) ) |
18 |
1
|
sbcieg |
|- ( A e. X -> ( [. A / x ]. ph <-> ps ) ) |
19 |
|
nfs1v |
|- F/ x [ y / x ] ph |
20 |
19
|
sbcgf |
|- ( A e. X -> ( [. A / x ]. [ y / x ] ph <-> [ y / x ] ph ) ) |
21 |
18 20
|
anbi12d |
|- ( A e. X -> ( ( [. A / x ]. ph /\ [. A / x ]. [ y / x ] ph ) <-> ( ps /\ [ y / x ] ph ) ) ) |
22 |
17 21
|
bitrid |
|- ( A e. X -> ( [. A / x ]. ( ph /\ [ y / x ] ph ) <-> ( ps /\ [ y / x ] ph ) ) ) |
23 |
|
sbcne12 |
|- ( [. A / x ]. x =/= y <-> [_ A / x ]_ x =/= [_ A / x ]_ y ) |
24 |
|
csbvarg |
|- ( A e. X -> [_ A / x ]_ x = A ) |
25 |
|
csbconstg |
|- ( A e. X -> [_ A / x ]_ y = y ) |
26 |
24 25
|
neeq12d |
|- ( A e. X -> ( [_ A / x ]_ x =/= [_ A / x ]_ y <-> A =/= y ) ) |
27 |
23 26
|
bitrid |
|- ( A e. X -> ( [. A / x ]. x =/= y <-> A =/= y ) ) |
28 |
22 27
|
anbi12d |
|- ( A e. X -> ( ( [. A / x ]. ( ph /\ [ y / x ] ph ) /\ [. A / x ]. x =/= y ) <-> ( ( ps /\ [ y / x ] ph ) /\ A =/= y ) ) ) |
29 |
16 28
|
bitrid |
|- ( A e. X -> ( [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) <-> ( ( ps /\ [ y / x ] ph ) /\ A =/= y ) ) ) |
30 |
29
|
3ad2ant1 |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) <-> ( ( ps /\ [ y / x ] ph ) /\ A =/= y ) ) ) |
31 |
30
|
sbcbidv |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [. B / y ]. [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) <-> [. B / y ]. ( ( ps /\ [ y / x ] ph ) /\ A =/= y ) ) ) |
32 |
|
sbcan |
|- ( [. B / y ]. ( ( ps /\ [ y / x ] ph ) /\ A =/= y ) <-> ( [. B / y ]. ( ps /\ [ y / x ] ph ) /\ [. B / y ]. A =/= y ) ) |
33 |
|
sbcan |
|- ( [. B / y ]. ( ps /\ [ y / x ] ph ) <-> ( [. B / y ]. ps /\ [. B / y ]. [ y / x ] ph ) ) |
34 |
|
sbcg |
|- ( B e. X -> ( [. B / y ]. ps <-> ps ) ) |
35 |
|
sbsbc |
|- ( [ y / x ] ph <-> [. y / x ]. ph ) |
36 |
35
|
sbcbii |
|- ( [. B / y ]. [ y / x ] ph <-> [. B / y ]. [. y / x ]. ph ) |
37 |
|
sbccow |
|- ( [. B / y ]. [. y / x ]. ph <-> [. B / x ]. ph ) |
38 |
37
|
a1i |
|- ( B e. X -> ( [. B / y ]. [. y / x ]. ph <-> [. B / x ]. ph ) ) |
39 |
36 38
|
bitrid |
|- ( B e. X -> ( [. B / y ]. [ y / x ] ph <-> [. B / x ]. ph ) ) |
40 |
34 39
|
anbi12d |
|- ( B e. X -> ( ( [. B / y ]. ps /\ [. B / y ]. [ y / x ] ph ) <-> ( ps /\ [. B / x ]. ph ) ) ) |
41 |
40
|
3ad2ant2 |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( ( [. B / y ]. ps /\ [. B / y ]. [ y / x ] ph ) <-> ( ps /\ [. B / x ]. ph ) ) ) |
42 |
33 41
|
bitrid |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [. B / y ]. ( ps /\ [ y / x ] ph ) <-> ( ps /\ [. B / x ]. ph ) ) ) |
43 |
|
sbcne12 |
|- ( [. B / y ]. A =/= y <-> [_ B / y ]_ A =/= [_ B / y ]_ y ) |
44 |
|
csbconstg |
|- ( B e. X -> [_ B / y ]_ A = A ) |
45 |
|
csbvarg |
|- ( B e. X -> [_ B / y ]_ y = B ) |
46 |
44 45
|
neeq12d |
|- ( B e. X -> ( [_ B / y ]_ A =/= [_ B / y ]_ y <-> A =/= B ) ) |
47 |
46
|
3ad2ant2 |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [_ B / y ]_ A =/= [_ B / y ]_ y <-> A =/= B ) ) |
48 |
43 47
|
bitrid |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [. B / y ]. A =/= y <-> A =/= B ) ) |
49 |
42 48
|
anbi12d |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( ( [. B / y ]. ( ps /\ [ y / x ] ph ) /\ [. B / y ]. A =/= y ) <-> ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) ) |
50 |
32 49
|
bitrid |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [. B / y ]. ( ( ps /\ [ y / x ] ph ) /\ A =/= y ) <-> ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) ) |
51 |
31 50
|
bitrd |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [. B / y ]. [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) <-> ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) ) |
52 |
15 51
|
mpbird |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> [. B / y ]. [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
53 |
|
rspesbca |
|- ( ( B e. X /\ [. B / y ]. [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) -> E. y e. X [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
54 |
14 52 53
|
syl2anc |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> E. y e. X [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
55 |
|
sbcrex |
|- ( [. A / x ]. E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) <-> E. y e. X [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
56 |
54 55
|
sylibr |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> [. A / x ]. E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
57 |
|
rspesbca |
|- ( ( A e. X /\ [. A / x ]. E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) -> E. x e. X E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
58 |
13 56 57
|
syl2anc |
|- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> E. x e. X E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
59 |
3 4 11 12 58
|
syl112anc |
|- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> E. x e. X E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
60 |
|
pm4.61 |
|- ( -. ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> ( ( ph /\ [ y / x ] ph ) /\ -. x = y ) ) |
61 |
|
df-ne |
|- ( x =/= y <-> -. x = y ) |
62 |
61
|
bicomi |
|- ( -. x = y <-> x =/= y ) |
63 |
62
|
anbi2i |
|- ( ( ( ph /\ [ y / x ] ph ) /\ -. x = y ) <-> ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
64 |
60 63
|
bitri |
|- ( -. ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
65 |
64
|
2rexbii |
|- ( E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> E. x e. X E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
66 |
59 65
|
sylibr |
|- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
67 |
66
|
olcd |
|- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> ( -. E. x e. X ph \/ E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
68 |
|
ianor |
|- ( -. ( E. x e. X ph /\ A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) ) <-> ( -. E. x e. X ph \/ -. A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
69 |
|
rexnal2 |
|- ( E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> -. A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
70 |
69
|
bicomi |
|- ( -. A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
71 |
70
|
orbi2i |
|- ( ( -. E. x e. X ph \/ -. A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) ) <-> ( -. E. x e. X ph \/ E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
72 |
68 71
|
bitri |
|- ( -. ( E. x e. X ph /\ A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) ) <-> ( -. E. x e. X ph \/ E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
73 |
|
reu2 |
|- ( E! x e. X ph <-> ( E. x e. X ph /\ A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
74 |
72 73
|
xchnxbir |
|- ( -. E! x e. X ph <-> ( -. E. x e. X ph \/ E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
75 |
67 74
|
sylibr |
|- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> -. E! x e. X ph ) |
76 |
75
|
ex |
|- ( ( A e. X /\ B e. X /\ A =/= B ) -> ( ( ps /\ ch ) -> -. E! x e. X ph ) ) |