Metamath Proof Explorer


Theorem 2nreu

Description: If there are two different sets fulfilling a wff (by implicit substitution), then there is no unique set fulfilling the wff. (Contributed by AV, 20-Jun-2023)

Ref Expression
Hypotheses 2nreu.a x=Aφψ
2nreu.b x=Bφχ
Assertion 2nreu AXBXABψχ¬∃!xXφ

Proof

Step Hyp Ref Expression
1 2nreu.a x=Aφψ
2 2nreu.b x=Bφχ
3 simpl1 AXBXABψχAX
4 simpl2 AXBXABψχBX
5 simprl AXBXABψχψ
6 2 sbcieg BX[˙B/x]˙φχ
7 6 3ad2ant2 AXBXAB[˙B/x]˙φχ
8 7 biimprd AXBXABχ[˙B/x]˙φ
9 8 adantld AXBXABψχ[˙B/x]˙φ
10 9 imp AXBXABψχ[˙B/x]˙φ
11 5 10 jca AXBXABψχψ[˙B/x]˙φ
12 simpl3 AXBXABψχAB
13 simp1 AXBXψ[˙B/x]˙φABAX
14 simp2 AXBXψ[˙B/x]˙φABBX
15 simp3 AXBXψ[˙B/x]˙φABψ[˙B/x]˙φAB
16 sbcan [˙A/x]˙φyxφxy[˙A/x]˙φyxφ[˙A/x]˙xy
17 sbcan [˙A/x]˙φyxφ[˙A/x]˙φ[˙A/x]˙yxφ
18 1 sbcieg AX[˙A/x]˙φψ
19 nfs1v xyxφ
20 19 sbcgf AX[˙A/x]˙yxφyxφ
21 18 20 anbi12d AX[˙A/x]˙φ[˙A/x]˙yxφψyxφ
22 17 21 bitrid AX[˙A/x]˙φyxφψyxφ
23 sbcne12 [˙A/x]˙xyA/xxA/xy
24 csbvarg AXA/xx=A
25 csbconstg AXA/xy=y
26 24 25 neeq12d AXA/xxA/xyAy
27 23 26 bitrid AX[˙A/x]˙xyAy
28 22 27 anbi12d AX[˙A/x]˙φyxφ[˙A/x]˙xyψyxφAy
29 16 28 bitrid AX[˙A/x]˙φyxφxyψyxφAy
30 29 3ad2ant1 AXBXψ[˙B/x]˙φAB[˙A/x]˙φyxφxyψyxφAy
31 30 sbcbidv AXBXψ[˙B/x]˙φAB[˙B/y]˙[˙A/x]˙φyxφxy[˙B/y]˙ψyxφAy
32 sbcan [˙B/y]˙ψyxφAy[˙B/y]˙ψyxφ[˙B/y]˙Ay
33 sbcan [˙B/y]˙ψyxφ[˙B/y]˙ψ[˙B/y]˙yxφ
34 sbcg BX[˙B/y]˙ψψ
35 sbsbc yxφ[˙y/x]˙φ
36 35 sbcbii [˙B/y]˙yxφ[˙B/y]˙[˙y/x]˙φ
37 sbccow [˙B/y]˙[˙y/x]˙φ[˙B/x]˙φ
38 37 a1i BX[˙B/y]˙[˙y/x]˙φ[˙B/x]˙φ
39 36 38 bitrid BX[˙B/y]˙yxφ[˙B/x]˙φ
40 34 39 anbi12d BX[˙B/y]˙ψ[˙B/y]˙yxφψ[˙B/x]˙φ
41 40 3ad2ant2 AXBXψ[˙B/x]˙φAB[˙B/y]˙ψ[˙B/y]˙yxφψ[˙B/x]˙φ
42 33 41 bitrid AXBXψ[˙B/x]˙φAB[˙B/y]˙ψyxφψ[˙B/x]˙φ
43 sbcne12 [˙B/y]˙AyB/yAB/yy
44 csbconstg BXB/yA=A
45 csbvarg BXB/yy=B
46 44 45 neeq12d BXB/yAB/yyAB
47 46 3ad2ant2 AXBXψ[˙B/x]˙φABB/yAB/yyAB
48 43 47 bitrid AXBXψ[˙B/x]˙φAB[˙B/y]˙AyAB
49 42 48 anbi12d AXBXψ[˙B/x]˙φAB[˙B/y]˙ψyxφ[˙B/y]˙Ayψ[˙B/x]˙φAB
50 32 49 bitrid AXBXψ[˙B/x]˙φAB[˙B/y]˙ψyxφAyψ[˙B/x]˙φAB
51 31 50 bitrd AXBXψ[˙B/x]˙φAB[˙B/y]˙[˙A/x]˙φyxφxyψ[˙B/x]˙φAB
52 15 51 mpbird AXBXψ[˙B/x]˙φAB[˙B/y]˙[˙A/x]˙φyxφxy
53 rspesbca BX[˙B/y]˙[˙A/x]˙φyxφxyyX[˙A/x]˙φyxφxy
54 14 52 53 syl2anc AXBXψ[˙B/x]˙φAByX[˙A/x]˙φyxφxy
55 sbcrex [˙A/x]˙yXφyxφxyyX[˙A/x]˙φyxφxy
56 54 55 sylibr AXBXψ[˙B/x]˙φAB[˙A/x]˙yXφyxφxy
57 rspesbca AX[˙A/x]˙yXφyxφxyxXyXφyxφxy
58 13 56 57 syl2anc AXBXψ[˙B/x]˙φABxXyXφyxφxy
59 3 4 11 12 58 syl112anc AXBXABψχxXyXφyxφxy
60 pm4.61 ¬φyxφx=yφyxφ¬x=y
61 df-ne xy¬x=y
62 61 bicomi ¬x=yxy
63 62 anbi2i φyxφ¬x=yφyxφxy
64 60 63 bitri ¬φyxφx=yφyxφxy
65 64 2rexbii xXyX¬φyxφx=yxXyXφyxφxy
66 59 65 sylibr AXBXABψχxXyX¬φyxφx=y
67 66 olcd AXBXABψχ¬xXφxXyX¬φyxφx=y
68 ianor ¬xXφxXyXφyxφx=y¬xXφ¬xXyXφyxφx=y
69 rexnal2 xXyX¬φyxφx=y¬xXyXφyxφx=y
70 69 bicomi ¬xXyXφyxφx=yxXyX¬φyxφx=y
71 70 orbi2i ¬xXφ¬xXyXφyxφx=y¬xXφxXyX¬φyxφx=y
72 68 71 bitri ¬xXφxXyXφyxφx=y¬xXφxXyX¬φyxφx=y
73 reu2 ∃!xXφxXφxXyXφyxφx=y
74 72 73 xchnxbir ¬∃!xXφ¬xXφxXyX¬φyxφx=y
75 67 74 sylibr AXBXABψχ¬∃!xXφ
76 75 ex AXBXABψχ¬∃!xXφ