Step |
Hyp |
Ref |
Expression |
1 |
|
2nreu.a |
|
2 |
|
2nreu.b |
|
3 |
|
simpl1 |
|
4 |
|
simpl2 |
|
5 |
|
simprl |
|
6 |
2
|
sbcieg |
|
7 |
6
|
3ad2ant2 |
|
8 |
7
|
biimprd |
|
9 |
8
|
adantld |
|
10 |
9
|
imp |
|
11 |
5 10
|
jca |
|
12 |
|
simpl3 |
|
13 |
|
simp1 |
|
14 |
|
simp2 |
|
15 |
|
simp3 |
|
16 |
|
sbcan |
|
17 |
|
sbcan |
|
18 |
1
|
sbcieg |
|
19 |
|
nfs1v |
|
20 |
19
|
sbcgf |
|
21 |
18 20
|
anbi12d |
|
22 |
17 21
|
bitrid |
|
23 |
|
sbcne12 |
|
24 |
|
csbvarg |
|
25 |
|
csbconstg |
|
26 |
24 25
|
neeq12d |
|
27 |
23 26
|
bitrid |
|
28 |
22 27
|
anbi12d |
|
29 |
16 28
|
bitrid |
|
30 |
29
|
3ad2ant1 |
|
31 |
30
|
sbcbidv |
|
32 |
|
sbcan |
|
33 |
|
sbcan |
|
34 |
|
sbcg |
|
35 |
|
sbsbc |
|
36 |
35
|
sbcbii |
|
37 |
|
sbccow |
|
38 |
37
|
a1i |
|
39 |
36 38
|
bitrid |
|
40 |
34 39
|
anbi12d |
|
41 |
40
|
3ad2ant2 |
|
42 |
33 41
|
bitrid |
|
43 |
|
sbcne12 |
|
44 |
|
csbconstg |
|
45 |
|
csbvarg |
|
46 |
44 45
|
neeq12d |
|
47 |
46
|
3ad2ant2 |
|
48 |
43 47
|
bitrid |
|
49 |
42 48
|
anbi12d |
|
50 |
32 49
|
bitrid |
|
51 |
31 50
|
bitrd |
|
52 |
15 51
|
mpbird |
|
53 |
|
rspesbca |
|
54 |
14 52 53
|
syl2anc |
|
55 |
|
sbcrex |
|
56 |
54 55
|
sylibr |
|
57 |
|
rspesbca |
|
58 |
13 56 57
|
syl2anc |
|
59 |
3 4 11 12 58
|
syl112anc |
|
60 |
|
pm4.61 |
|
61 |
|
df-ne |
|
62 |
61
|
bicomi |
|
63 |
62
|
anbi2i |
|
64 |
60 63
|
bitri |
|
65 |
64
|
2rexbii |
|
66 |
59 65
|
sylibr |
|
67 |
66
|
olcd |
|
68 |
|
ianor |
|
69 |
|
rexnal2 |
|
70 |
69
|
bicomi |
|
71 |
70
|
orbi2i |
|
72 |
68 71
|
bitri |
|
73 |
|
reu2 |
|
74 |
72 73
|
xchnxbir |
|
75 |
67 74
|
sylibr |
|
76 |
75
|
ex |
|