Description: If there are two different sets fulfilling a wff (by implicit substitution), then there is no unique set fulfilling the wff. (Contributed by AV, 20-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2nreu.a | |
|
2nreu.b | |
||
Assertion | 2nreu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nreu.a | |
|
2 | 2nreu.b | |
|
3 | simpl1 | |
|
4 | simpl2 | |
|
5 | simprl | |
|
6 | 2 | sbcieg | |
7 | 6 | 3ad2ant2 | |
8 | 7 | biimprd | |
9 | 8 | adantld | |
10 | 9 | imp | |
11 | 5 10 | jca | |
12 | simpl3 | |
|
13 | simp1 | |
|
14 | simp2 | |
|
15 | simp3 | |
|
16 | sbcan | |
|
17 | sbcan | |
|
18 | 1 | sbcieg | |
19 | nfs1v | |
|
20 | 19 | sbcgf | |
21 | 18 20 | anbi12d | |
22 | 17 21 | bitrid | |
23 | sbcne12 | |
|
24 | csbvarg | |
|
25 | csbconstg | |
|
26 | 24 25 | neeq12d | |
27 | 23 26 | bitrid | |
28 | 22 27 | anbi12d | |
29 | 16 28 | bitrid | |
30 | 29 | 3ad2ant1 | |
31 | 30 | sbcbidv | |
32 | sbcan | |
|
33 | sbcan | |
|
34 | sbcg | |
|
35 | sbsbc | |
|
36 | 35 | sbcbii | |
37 | sbccow | |
|
38 | 37 | a1i | |
39 | 36 38 | bitrid | |
40 | 34 39 | anbi12d | |
41 | 40 | 3ad2ant2 | |
42 | 33 41 | bitrid | |
43 | sbcne12 | |
|
44 | csbconstg | |
|
45 | csbvarg | |
|
46 | 44 45 | neeq12d | |
47 | 46 | 3ad2ant2 | |
48 | 43 47 | bitrid | |
49 | 42 48 | anbi12d | |
50 | 32 49 | bitrid | |
51 | 31 50 | bitrd | |
52 | 15 51 | mpbird | |
53 | rspesbca | |
|
54 | 14 52 53 | syl2anc | |
55 | sbcrex | |
|
56 | 54 55 | sylibr | |
57 | rspesbca | |
|
58 | 13 56 57 | syl2anc | |
59 | 3 4 11 12 58 | syl112anc | |
60 | pm4.61 | |
|
61 | df-ne | |
|
62 | 61 | bicomi | |
63 | 62 | anbi2i | |
64 | 60 63 | bitri | |
65 | 64 | 2rexbii | |
66 | 59 65 | sylibr | |
67 | 66 | olcd | |
68 | ianor | |
|
69 | rexnal2 | |
|
70 | 69 | bicomi | |
71 | 70 | orbi2i | |
72 | 68 71 | bitri | |
73 | reu2 | |
|
74 | 72 73 | xchnxbir | |
75 | 67 74 | sylibr | |
76 | 75 | ex | |