Step |
Hyp |
Ref |
Expression |
1 |
|
renegcl |
|- ( R e. RR -> -u R e. RR ) |
2 |
1
|
adantr |
|- ( ( R e. RR /\ 0 <_ R ) -> -u R e. RR ) |
3 |
|
simpl |
|- ( ( R e. RR /\ 0 <_ R ) -> R e. RR ) |
4 |
|
2cnd |
|- ( ( R e. RR /\ 0 <_ R ) -> 2 e. CC ) |
5 |
|
iccssre |
|- ( ( -u R e. RR /\ R e. RR ) -> ( -u R [,] R ) C_ RR ) |
6 |
2 3 5
|
syl2anc |
|- ( ( R e. RR /\ 0 <_ R ) -> ( -u R [,] R ) C_ RR ) |
7 |
|
ax-resscn |
|- RR C_ CC |
8 |
6 7
|
sstrdi |
|- ( ( R e. RR /\ 0 <_ R ) -> ( -u R [,] R ) C_ CC ) |
9 |
|
ssidd |
|- ( ( R e. RR /\ 0 <_ R ) -> CC C_ CC ) |
10 |
|
cncfmptc |
|- ( ( 2 e. CC /\ ( -u R [,] R ) C_ CC /\ CC C_ CC ) -> ( t e. ( -u R [,] R ) |-> 2 ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
11 |
4 8 9 10
|
syl3anc |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> 2 ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
12 |
|
areacirclem2 |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
13 |
11 12
|
mulcncf |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
14 |
|
cnicciblnc |
|- ( ( -u R e. RR /\ R e. RR /\ ( t e. ( -u R [,] R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) -> ( t e. ( -u R [,] R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) e. L^1 ) |
15 |
2 3 13 14
|
syl3anc |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) e. L^1 ) |