Step |
Hyp |
Ref |
Expression |
1 |
|
rpcn |
|- ( R e. RR+ -> R e. CC ) |
2 |
1
|
sqcld |
|- ( R e. RR+ -> ( R ^ 2 ) e. CC ) |
3 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
4 |
3
|
renegcld |
|- ( R e. RR+ -> -u R e. RR ) |
5 |
|
iccssre |
|- ( ( -u R e. RR /\ R e. RR ) -> ( -u R [,] R ) C_ RR ) |
6 |
4 3 5
|
syl2anc |
|- ( R e. RR+ -> ( -u R [,] R ) C_ RR ) |
7 |
|
ax-resscn |
|- RR C_ CC |
8 |
6 7
|
sstrdi |
|- ( R e. RR+ -> ( -u R [,] R ) C_ CC ) |
9 |
|
ssid |
|- CC C_ CC |
10 |
9
|
a1i |
|- ( R e. RR+ -> CC C_ CC ) |
11 |
|
cncfmptc |
|- ( ( ( R ^ 2 ) e. CC /\ ( -u R [,] R ) C_ CC /\ CC C_ CC ) -> ( t e. ( -u R [,] R ) |-> ( R ^ 2 ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
12 |
2 8 10 11
|
syl3anc |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( R ^ 2 ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
13 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
14 |
13
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
15 |
14
|
a1i |
|- ( R e. RR+ -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
16 |
8
|
sselda |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> t e. CC ) |
17 |
1
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> R e. CC ) |
18 |
|
rpne0 |
|- ( R e. RR+ -> R =/= 0 ) |
19 |
18
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> R =/= 0 ) |
20 |
16 17 19
|
divcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( t / R ) e. CC ) |
21 |
|
asinval |
|- ( ( t / R ) e. CC -> ( arcsin ` ( t / R ) ) = ( -u _i x. ( log ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) |
22 |
20 21
|
syl |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( arcsin ` ( t / R ) ) = ( -u _i x. ( log ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) |
23 |
|
ax-icn |
|- _i e. CC |
24 |
23
|
a1i |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> _i e. CC ) |
25 |
24 20
|
mulcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( _i x. ( t / R ) ) e. CC ) |
26 |
|
1cnd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> 1 e. CC ) |
27 |
20
|
sqcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( t / R ) ^ 2 ) e. CC ) |
28 |
26 27
|
subcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( 1 - ( ( t / R ) ^ 2 ) ) e. CC ) |
29 |
28
|
sqrtcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) e. CC ) |
30 |
25 29
|
addcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. CC ) |
31 |
|
0lt1 |
|- 0 < 1 |
32 |
|
simp3 |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> t = 0 ) |
33 |
32
|
oveq1d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( t / R ) = ( 0 / R ) ) |
34 |
1 18
|
div0d |
|- ( R e. RR+ -> ( 0 / R ) = 0 ) |
35 |
34
|
3ad2ant1 |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( 0 / R ) = 0 ) |
36 |
33 35
|
eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( t / R ) = 0 ) |
37 |
36
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( _i x. ( t / R ) ) = ( _i x. 0 ) ) |
38 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
39 |
37 38
|
eqtrdi |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( _i x. ( t / R ) ) = 0 ) |
40 |
36
|
oveq1d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( ( t / R ) ^ 2 ) = ( 0 ^ 2 ) ) |
41 |
40
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( 1 - ( ( t / R ) ^ 2 ) ) = ( 1 - ( 0 ^ 2 ) ) ) |
42 |
41
|
fveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) = ( sqrt ` ( 1 - ( 0 ^ 2 ) ) ) ) |
43 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
44 |
43
|
oveq2i |
|- ( 1 - ( 0 ^ 2 ) ) = ( 1 - 0 ) |
45 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
46 |
44 45
|
eqtri |
|- ( 1 - ( 0 ^ 2 ) ) = 1 |
47 |
46
|
fveq2i |
|- ( sqrt ` ( 1 - ( 0 ^ 2 ) ) ) = ( sqrt ` 1 ) |
48 |
|
sqrt1 |
|- ( sqrt ` 1 ) = 1 |
49 |
47 48
|
eqtri |
|- ( sqrt ` ( 1 - ( 0 ^ 2 ) ) ) = 1 |
50 |
42 49
|
eqtrdi |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) = 1 ) |
51 |
39 50
|
oveq12d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( 0 + 1 ) ) |
52 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
53 |
51 52
|
eqtrdi |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = 1 ) |
54 |
53
|
breq2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( 0 < ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <-> 0 < 1 ) ) |
55 |
|
0red |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> 0 e. RR ) |
56 |
|
1red |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> 1 e. RR ) |
57 |
53 56
|
eqeltrd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR ) |
58 |
55 57
|
ltnled |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( 0 < ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <-> -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) ) |
59 |
54 58
|
bitr3d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> ( 0 < 1 <-> -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) ) |
60 |
31 59
|
mpbii |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t = 0 ) -> -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) |
61 |
60
|
3expa |
|- ( ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) /\ t = 0 ) -> -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) |
62 |
61
|
olcd |
|- ( ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) /\ t = 0 ) -> ( -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR \/ -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) ) |
63 |
|
inelr |
|- -. _i e. RR |
64 |
25 29
|
pncand |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) - ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( _i x. ( t / R ) ) ) |
65 |
64
|
3adant3 |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) - ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( _i x. ( t / R ) ) ) |
66 |
65
|
oveq1d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> ( ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) - ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( R / t ) ) = ( ( _i x. ( t / R ) ) x. ( R / t ) ) ) |
67 |
23
|
a1i |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> _i e. CC ) |
68 |
20
|
3adant3 |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> ( t / R ) e. CC ) |
69 |
1
|
3ad2ant1 |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> R e. CC ) |
70 |
16
|
3adant3 |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> t e. CC ) |
71 |
|
simp3 |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> t =/= 0 ) |
72 |
69 70 71
|
divcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> ( R / t ) e. CC ) |
73 |
67 68 72
|
mulassd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> ( ( _i x. ( t / R ) ) x. ( R / t ) ) = ( _i x. ( ( t / R ) x. ( R / t ) ) ) ) |
74 |
66 73
|
eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> ( ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) - ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( R / t ) ) = ( _i x. ( ( t / R ) x. ( R / t ) ) ) ) |
75 |
18
|
3ad2ant1 |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> R =/= 0 ) |
76 |
70 69 71 75
|
divcan6d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> ( ( t / R ) x. ( R / t ) ) = 1 ) |
77 |
76
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> ( _i x. ( ( t / R ) x. ( R / t ) ) ) = ( _i x. 1 ) ) |
78 |
67
|
mulid1d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> ( _i x. 1 ) = _i ) |
79 |
74 77 78
|
3eqtrrd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> _i = ( ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) - ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( R / t ) ) ) |
80 |
79
|
adantr |
|- ( ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR ) -> _i = ( ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) - ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( R / t ) ) ) |
81 |
|
simpr |
|- ( ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR ) -> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR ) |
82 |
|
1red |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> 1 e. RR ) |
83 |
6
|
sselda |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> t e. RR ) |
84 |
3
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> R e. RR ) |
85 |
83 84 19
|
redivcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( t / R ) e. RR ) |
86 |
85
|
resqcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( t / R ) ^ 2 ) e. RR ) |
87 |
82 86
|
resubcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( 1 - ( ( t / R ) ^ 2 ) ) e. RR ) |
88 |
|
elicc2 |
|- ( ( -u R e. RR /\ R e. RR ) -> ( t e. ( -u R [,] R ) <-> ( t e. RR /\ -u R <_ t /\ t <_ R ) ) ) |
89 |
4 3 88
|
syl2anc |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) <-> ( t e. RR /\ -u R <_ t /\ t <_ R ) ) ) |
90 |
|
1red |
|- ( ( R e. RR+ /\ t e. RR ) -> 1 e. RR ) |
91 |
|
simpr |
|- ( ( R e. RR+ /\ t e. RR ) -> t e. RR ) |
92 |
3
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> R e. RR ) |
93 |
18
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> R =/= 0 ) |
94 |
91 92 93
|
redivcld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t / R ) e. RR ) |
95 |
94
|
resqcld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t / R ) ^ 2 ) e. RR ) |
96 |
90 95
|
subge0d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( 0 <_ ( 1 - ( ( t / R ) ^ 2 ) ) <-> ( ( t / R ) ^ 2 ) <_ 1 ) ) |
97 |
|
recn |
|- ( t e. RR -> t e. CC ) |
98 |
97
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> t e. CC ) |
99 |
1
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> R e. CC ) |
100 |
98 99 93
|
sqdivd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t / R ) ^ 2 ) = ( ( t ^ 2 ) / ( R ^ 2 ) ) ) |
101 |
100
|
breq1d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( ( t / R ) ^ 2 ) <_ 1 <-> ( ( t ^ 2 ) / ( R ^ 2 ) ) <_ 1 ) ) |
102 |
|
resqcl |
|- ( t e. RR -> ( t ^ 2 ) e. RR ) |
103 |
102
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t ^ 2 ) e. RR ) |
104 |
3
|
resqcld |
|- ( R e. RR+ -> ( R ^ 2 ) e. RR ) |
105 |
|
rpgt0 |
|- ( R e. RR+ -> 0 < R ) |
106 |
|
0red |
|- ( R e. RR+ -> 0 e. RR ) |
107 |
|
0le0 |
|- 0 <_ 0 |
108 |
107
|
a1i |
|- ( R e. RR+ -> 0 <_ 0 ) |
109 |
|
rpge0 |
|- ( R e. RR+ -> 0 <_ R ) |
110 |
106 3 108 109
|
lt2sqd |
|- ( R e. RR+ -> ( 0 < R <-> ( 0 ^ 2 ) < ( R ^ 2 ) ) ) |
111 |
43
|
a1i |
|- ( R e. RR+ -> ( 0 ^ 2 ) = 0 ) |
112 |
111
|
breq1d |
|- ( R e. RR+ -> ( ( 0 ^ 2 ) < ( R ^ 2 ) <-> 0 < ( R ^ 2 ) ) ) |
113 |
110 112
|
bitrd |
|- ( R e. RR+ -> ( 0 < R <-> 0 < ( R ^ 2 ) ) ) |
114 |
105 113
|
mpbid |
|- ( R e. RR+ -> 0 < ( R ^ 2 ) ) |
115 |
104 114
|
elrpd |
|- ( R e. RR+ -> ( R ^ 2 ) e. RR+ ) |
116 |
115
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> ( R ^ 2 ) e. RR+ ) |
117 |
103 90 116
|
ledivmuld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( ( t ^ 2 ) / ( R ^ 2 ) ) <_ 1 <-> ( t ^ 2 ) <_ ( ( R ^ 2 ) x. 1 ) ) ) |
118 |
|
absresq |
|- ( t e. RR -> ( ( abs ` t ) ^ 2 ) = ( t ^ 2 ) ) |
119 |
118
|
eqcomd |
|- ( t e. RR -> ( t ^ 2 ) = ( ( abs ` t ) ^ 2 ) ) |
120 |
2
|
mulid1d |
|- ( R e. RR+ -> ( ( R ^ 2 ) x. 1 ) = ( R ^ 2 ) ) |
121 |
119 120
|
breqan12rd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t ^ 2 ) <_ ( ( R ^ 2 ) x. 1 ) <-> ( ( abs ` t ) ^ 2 ) <_ ( R ^ 2 ) ) ) |
122 |
97
|
abscld |
|- ( t e. RR -> ( abs ` t ) e. RR ) |
123 |
122
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> ( abs ` t ) e. RR ) |
124 |
97
|
absge0d |
|- ( t e. RR -> 0 <_ ( abs ` t ) ) |
125 |
124
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> 0 <_ ( abs ` t ) ) |
126 |
109
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> 0 <_ R ) |
127 |
123 92 125 126
|
le2sqd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) <_ R <-> ( ( abs ` t ) ^ 2 ) <_ ( R ^ 2 ) ) ) |
128 |
91 92
|
absled |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) <_ R <-> ( -u R <_ t /\ t <_ R ) ) ) |
129 |
121 127 128
|
3bitr2d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t ^ 2 ) <_ ( ( R ^ 2 ) x. 1 ) <-> ( -u R <_ t /\ t <_ R ) ) ) |
130 |
117 129
|
bitrd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( ( t ^ 2 ) / ( R ^ 2 ) ) <_ 1 <-> ( -u R <_ t /\ t <_ R ) ) ) |
131 |
96 101 130
|
3bitrrd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R <_ t /\ t <_ R ) <-> 0 <_ ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
132 |
131
|
biimpd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R <_ t /\ t <_ R ) -> 0 <_ ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
133 |
132
|
exp4b |
|- ( R e. RR+ -> ( t e. RR -> ( -u R <_ t -> ( t <_ R -> 0 <_ ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
134 |
133
|
3impd |
|- ( R e. RR+ -> ( ( t e. RR /\ -u R <_ t /\ t <_ R ) -> 0 <_ ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
135 |
89 134
|
sylbid |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) -> 0 <_ ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
136 |
135
|
imp |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> 0 <_ ( 1 - ( ( t / R ) ^ 2 ) ) ) |
137 |
87 136
|
resqrtcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) e. RR ) |
138 |
137
|
3adant3 |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) e. RR ) |
139 |
138
|
adantr |
|- ( ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR ) -> ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) e. RR ) |
140 |
81 139
|
resubcld |
|- ( ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR ) -> ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) - ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR ) |
141 |
3
|
3ad2ant1 |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> R e. RR ) |
142 |
83
|
3adant3 |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> t e. RR ) |
143 |
141 142 71
|
redivcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> ( R / t ) e. RR ) |
144 |
143
|
adantr |
|- ( ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR ) -> ( R / t ) e. RR ) |
145 |
140 144
|
remulcld |
|- ( ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR ) -> ( ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) - ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( R / t ) ) e. RR ) |
146 |
80 145
|
eqeltrd |
|- ( ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR ) -> _i e. RR ) |
147 |
146
|
ex |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) /\ t =/= 0 ) -> ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR -> _i e. RR ) ) |
148 |
147
|
3expa |
|- ( ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) /\ t =/= 0 ) -> ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR -> _i e. RR ) ) |
149 |
63 148
|
mtoi |
|- ( ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) /\ t =/= 0 ) -> -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR ) |
150 |
149
|
orcd |
|- ( ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) /\ t =/= 0 ) -> ( -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR \/ -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) ) |
151 |
62 150
|
pm2.61dane |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR \/ -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) ) |
152 |
|
ianor |
|- ( -. ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) <-> ( -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR \/ -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) ) |
153 |
151 152
|
sylibr |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> -. ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) ) |
154 |
|
mnfxr |
|- -oo e. RR* |
155 |
|
0re |
|- 0 e. RR |
156 |
|
elioc2 |
|- ( ( -oo e. RR* /\ 0 e. RR ) -> ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. ( -oo (,] 0 ) <-> ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR /\ -oo < ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) ) ) |
157 |
154 155 156
|
mp2an |
|- ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. ( -oo (,] 0 ) <-> ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR /\ -oo < ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) ) |
158 |
|
3simpb |
|- ( ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR /\ -oo < ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) -> ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) ) |
159 |
157 158
|
sylbi |
|- ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. ( -oo (,] 0 ) -> ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. RR /\ ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) <_ 0 ) ) |
160 |
153 159
|
nsyl |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> -. ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. ( -oo (,] 0 ) ) |
161 |
30 160
|
eldifd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. ( CC \ ( -oo (,] 0 ) ) ) |
162 |
|
fvres |
|- ( ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. ( CC \ ( -oo (,] 0 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( log ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
163 |
161 162
|
syl |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( log ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
164 |
163
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( -u _i x. ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) = ( -u _i x. ( log ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) |
165 |
22 164
|
eqtr4d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( arcsin ` ( t / R ) ) = ( -u _i x. ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) |
166 |
165
|
mpteq2dva |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( arcsin ` ( t / R ) ) ) = ( t e. ( -u R [,] R ) |-> ( -u _i x. ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) ) |
167 |
|
negicn |
|- -u _i e. CC |
168 |
167
|
a1i |
|- ( R e. RR+ -> -u _i e. CC ) |
169 |
|
cncfmptc |
|- ( ( -u _i e. CC /\ ( -u R [,] R ) C_ CC /\ CC C_ CC ) -> ( t e. ( -u R [,] R ) |-> -u _i ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
170 |
168 8 10 169
|
syl3anc |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> -u _i ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
171 |
13
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
172 |
171
|
a1i |
|- ( R e. RR+ -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
173 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( -u R [,] R ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) e. ( TopOn ` ( -u R [,] R ) ) ) |
174 |
172 8 173
|
syl2anc |
|- ( R e. RR+ -> ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) e. ( TopOn ` ( -u R [,] R ) ) ) |
175 |
161
|
fmpttd |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) : ( -u R [,] R ) --> ( CC \ ( -oo (,] 0 ) ) ) |
176 |
|
difssd |
|- ( R e. RR+ -> ( CC \ ( -oo (,] 0 ) ) C_ CC ) |
177 |
16 17 19
|
divrec2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( t / R ) = ( ( 1 / R ) x. t ) ) |
178 |
177
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( _i x. ( t / R ) ) = ( _i x. ( ( 1 / R ) x. t ) ) ) |
179 |
1 18
|
reccld |
|- ( R e. RR+ -> ( 1 / R ) e. CC ) |
180 |
179
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( 1 / R ) e. CC ) |
181 |
24 180 16
|
mulassd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( _i x. ( 1 / R ) ) x. t ) = ( _i x. ( ( 1 / R ) x. t ) ) ) |
182 |
178 181
|
eqtr4d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( _i x. ( t / R ) ) = ( ( _i x. ( 1 / R ) ) x. t ) ) |
183 |
182
|
mpteq2dva |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( _i x. ( t / R ) ) ) = ( t e. ( -u R [,] R ) |-> ( ( _i x. ( 1 / R ) ) x. t ) ) ) |
184 |
23
|
a1i |
|- ( R e. RR+ -> _i e. CC ) |
185 |
184 179
|
mulcld |
|- ( R e. RR+ -> ( _i x. ( 1 / R ) ) e. CC ) |
186 |
|
cncfmptc |
|- ( ( ( _i x. ( 1 / R ) ) e. CC /\ ( -u R [,] R ) C_ CC /\ CC C_ CC ) -> ( t e. ( -u R [,] R ) |-> ( _i x. ( 1 / R ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
187 |
185 8 10 186
|
syl3anc |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( _i x. ( 1 / R ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
188 |
|
cncfmptid |
|- ( ( ( -u R [,] R ) C_ CC /\ CC C_ CC ) -> ( t e. ( -u R [,] R ) |-> t ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
189 |
8 10 188
|
syl2anc |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> t ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
190 |
187 189
|
mulcncf |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( _i x. ( 1 / R ) ) x. t ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
191 |
183 190
|
eqeltrd |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( _i x. ( t / R ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
192 |
17 29
|
mulcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. CC ) |
193 |
192 17 19
|
divrec2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) / R ) = ( ( 1 / R ) x. ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
194 |
29 17 19
|
divcan3d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) / R ) = ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
195 |
104
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( R ^ 2 ) e. RR ) |
196 |
3
|
sqge0d |
|- ( R e. RR+ -> 0 <_ ( R ^ 2 ) ) |
197 |
196
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> 0 <_ ( R ^ 2 ) ) |
198 |
195 197 87 136
|
sqrtmuld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( sqrt ` ( ( R ^ 2 ) x. ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( ( sqrt ` ( R ^ 2 ) ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) |
199 |
2
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( R ^ 2 ) e. CC ) |
200 |
199 26 27
|
subdid |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( R ^ 2 ) x. ( 1 - ( ( t / R ) ^ 2 ) ) ) = ( ( ( R ^ 2 ) x. 1 ) - ( ( R ^ 2 ) x. ( ( t / R ) ^ 2 ) ) ) ) |
201 |
199
|
mulid1d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( R ^ 2 ) x. 1 ) = ( R ^ 2 ) ) |
202 |
16 17 19
|
sqdivd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( t / R ) ^ 2 ) = ( ( t ^ 2 ) / ( R ^ 2 ) ) ) |
203 |
202
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( R ^ 2 ) x. ( ( t / R ) ^ 2 ) ) = ( ( R ^ 2 ) x. ( ( t ^ 2 ) / ( R ^ 2 ) ) ) ) |
204 |
16
|
sqcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( t ^ 2 ) e. CC ) |
205 |
|
sqne0 |
|- ( R e. CC -> ( ( R ^ 2 ) =/= 0 <-> R =/= 0 ) ) |
206 |
1 205
|
syl |
|- ( R e. RR+ -> ( ( R ^ 2 ) =/= 0 <-> R =/= 0 ) ) |
207 |
18 206
|
mpbird |
|- ( R e. RR+ -> ( R ^ 2 ) =/= 0 ) |
208 |
207
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( R ^ 2 ) =/= 0 ) |
209 |
204 199 208
|
divcan2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( R ^ 2 ) x. ( ( t ^ 2 ) / ( R ^ 2 ) ) ) = ( t ^ 2 ) ) |
210 |
203 209
|
eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( R ^ 2 ) x. ( ( t / R ) ^ 2 ) ) = ( t ^ 2 ) ) |
211 |
201 210
|
oveq12d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( ( R ^ 2 ) x. 1 ) - ( ( R ^ 2 ) x. ( ( t / R ) ^ 2 ) ) ) = ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
212 |
200 211
|
eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( R ^ 2 ) x. ( 1 - ( ( t / R ) ^ 2 ) ) ) = ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
213 |
212
|
fveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( sqrt ` ( ( R ^ 2 ) x. ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
214 |
109
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> 0 <_ R ) |
215 |
84 214
|
sqrtsqd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( sqrt ` ( R ^ 2 ) ) = R ) |
216 |
215
|
oveq1d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( sqrt ` ( R ^ 2 ) ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) |
217 |
198 213 216
|
3eqtr3rd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
218 |
217
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( 1 / R ) x. ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( ( 1 / R ) x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
219 |
193 194 218
|
3eqtr3d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) = ( ( 1 / R ) x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
220 |
219
|
mpteq2dva |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( t e. ( -u R [,] R ) |-> ( ( 1 / R ) x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
221 |
|
cncfmptc |
|- ( ( ( 1 / R ) e. CC /\ ( -u R [,] R ) C_ CC /\ CC C_ CC ) -> ( t e. ( -u R [,] R ) |-> ( 1 / R ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
222 |
179 8 10 221
|
syl3anc |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( 1 / R ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
223 |
|
areacirclem2 |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
224 |
3 109 223
|
syl2anc |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
225 |
222 224
|
mulcncf |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( 1 / R ) x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
226 |
220 225
|
eqeltrd |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
227 |
13 15 191 226
|
cncfmpt2f |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
228 |
|
cncffvrn |
|- ( ( ( CC \ ( -oo (,] 0 ) ) C_ CC /\ ( t e. ( -u R [,] R ) |-> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) -> ( ( t e. ( -u R [,] R ) |-> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) <-> ( t e. ( -u R [,] R ) |-> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) : ( -u R [,] R ) --> ( CC \ ( -oo (,] 0 ) ) ) ) |
229 |
176 227 228
|
syl2anc |
|- ( R e. RR+ -> ( ( t e. ( -u R [,] R ) |-> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) <-> ( t e. ( -u R [,] R ) |-> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) : ( -u R [,] R ) --> ( CC \ ( -oo (,] 0 ) ) ) ) |
230 |
175 229
|
mpbird |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) ) |
231 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) = ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) |
232 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) |
233 |
13 231 232
|
cncfcn |
|- ( ( ( -u R [,] R ) C_ CC /\ ( CC \ ( -oo (,] 0 ) ) C_ CC ) -> ( ( -u R [,] R ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) = ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) ) ) |
234 |
8 176 233
|
syl2anc |
|- ( R e. RR+ -> ( ( -u R [,] R ) -cn-> ( CC \ ( -oo (,] 0 ) ) ) = ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) ) ) |
235 |
230 234
|
eleqtrd |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) ) ) |
236 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
237 |
236
|
logcn |
|- ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) |
238 |
|
difss |
|- ( CC \ ( -oo (,] 0 ) ) C_ CC |
239 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( ( TopOpen ` CCfld ) |`t CC ) |
240 |
13 232 239
|
cncfcn |
|- ( ( ( CC \ ( -oo (,] 0 ) ) C_ CC /\ CC C_ CC ) -> ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
241 |
238 9 240
|
mp2an |
|- ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) |
242 |
237 241
|
eleqtri |
|- ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) |
243 |
242
|
a1i |
|- ( R e. RR+ -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
244 |
174 235 243
|
cnmpt11f |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
245 |
13 231 239
|
cncfcn |
|- ( ( ( -u R [,] R ) C_ CC /\ CC C_ CC ) -> ( ( -u R [,] R ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
246 |
8 10 245
|
syl2anc |
|- ( R e. RR+ -> ( ( -u R [,] R ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
247 |
244 246
|
eleqtrrd |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
248 |
170 247
|
mulcncf |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( -u _i x. ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` ( ( _i x. ( t / R ) ) + ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
249 |
166 248
|
eqeltrd |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( arcsin ` ( t / R ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
250 |
219
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( ( t / R ) x. ( ( 1 / R ) x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
251 |
199 204
|
subcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( R ^ 2 ) - ( t ^ 2 ) ) e. CC ) |
252 |
251
|
sqrtcld |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. CC ) |
253 |
20 180 252
|
mulassd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( ( t / R ) x. ( 1 / R ) ) x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) = ( ( t / R ) x. ( ( 1 / R ) x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
254 |
16 17 19
|
divrecd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( t / R ) = ( t x. ( 1 / R ) ) ) |
255 |
254
|
oveq1d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( t / R ) x. ( 1 / R ) ) = ( ( t x. ( 1 / R ) ) x. ( 1 / R ) ) ) |
256 |
16 180 180
|
mulassd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( t x. ( 1 / R ) ) x. ( 1 / R ) ) = ( t x. ( ( 1 / R ) x. ( 1 / R ) ) ) ) |
257 |
255 256
|
eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( t / R ) x. ( 1 / R ) ) = ( t x. ( ( 1 / R ) x. ( 1 / R ) ) ) ) |
258 |
257
|
oveq1d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( ( t / R ) x. ( 1 / R ) ) x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) = ( ( t x. ( ( 1 / R ) x. ( 1 / R ) ) ) x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
259 |
250 253 258
|
3eqtr2d |
|- ( ( R e. RR+ /\ t e. ( -u R [,] R ) ) -> ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( ( t x. ( ( 1 / R ) x. ( 1 / R ) ) ) x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
260 |
259
|
mpteq2dva |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( t e. ( -u R [,] R ) |-> ( ( t x. ( ( 1 / R ) x. ( 1 / R ) ) ) x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
261 |
179 179
|
mulcld |
|- ( R e. RR+ -> ( ( 1 / R ) x. ( 1 / R ) ) e. CC ) |
262 |
|
cncfmptc |
|- ( ( ( ( 1 / R ) x. ( 1 / R ) ) e. CC /\ ( -u R [,] R ) C_ CC /\ CC C_ CC ) -> ( t e. ( -u R [,] R ) |-> ( ( 1 / R ) x. ( 1 / R ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
263 |
261 8 10 262
|
syl3anc |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( 1 / R ) x. ( 1 / R ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
264 |
189 263
|
mulcncf |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( t x. ( ( 1 / R ) x. ( 1 / R ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
265 |
264 224
|
mulcncf |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( t x. ( ( 1 / R ) x. ( 1 / R ) ) ) x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
266 |
260 265
|
eqeltrd |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
267 |
13 15 249 266
|
cncfmpt2f |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( arcsin ` ( t / R ) ) + ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
268 |
12 267
|
mulcncf |
|- ( R e. RR+ -> ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( t / R ) ) + ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |