Step |
Hyp |
Ref |
Expression |
1 |
|
resqcl |
|- ( R e. RR -> ( R ^ 2 ) e. RR ) |
2 |
1
|
adantr |
|- ( ( R e. RR /\ 0 <_ R ) -> ( R ^ 2 ) e. RR ) |
3 |
2
|
adantr |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R [,] R ) ) -> ( R ^ 2 ) e. RR ) |
4 |
|
renegcl |
|- ( R e. RR -> -u R e. RR ) |
5 |
|
iccssre |
|- ( ( -u R e. RR /\ R e. RR ) -> ( -u R [,] R ) C_ RR ) |
6 |
4 5
|
mpancom |
|- ( R e. RR -> ( -u R [,] R ) C_ RR ) |
7 |
6
|
sselda |
|- ( ( R e. RR /\ t e. ( -u R [,] R ) ) -> t e. RR ) |
8 |
7
|
resqcld |
|- ( ( R e. RR /\ t e. ( -u R [,] R ) ) -> ( t ^ 2 ) e. RR ) |
9 |
8
|
adantlr |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R [,] R ) ) -> ( t ^ 2 ) e. RR ) |
10 |
3 9
|
resubcld |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R [,] R ) ) -> ( ( R ^ 2 ) - ( t ^ 2 ) ) e. RR ) |
11 |
|
elicc2 |
|- ( ( -u R e. RR /\ R e. RR ) -> ( t e. ( -u R [,] R ) <-> ( t e. RR /\ -u R <_ t /\ t <_ R ) ) ) |
12 |
4 11
|
mpancom |
|- ( R e. RR -> ( t e. ( -u R [,] R ) <-> ( t e. RR /\ -u R <_ t /\ t <_ R ) ) ) |
13 |
12
|
adantr |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) <-> ( t e. RR /\ -u R <_ t /\ t <_ R ) ) ) |
14 |
1
|
3ad2ant1 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( R ^ 2 ) e. RR ) |
15 |
|
resqcl |
|- ( t e. RR -> ( t ^ 2 ) e. RR ) |
16 |
15
|
3ad2ant3 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( t ^ 2 ) e. RR ) |
17 |
14 16
|
subge0d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) <-> ( t ^ 2 ) <_ ( R ^ 2 ) ) ) |
18 |
|
absresq |
|- ( t e. RR -> ( ( abs ` t ) ^ 2 ) = ( t ^ 2 ) ) |
19 |
18
|
3ad2ant3 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( abs ` t ) ^ 2 ) = ( t ^ 2 ) ) |
20 |
19
|
breq1d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( ( abs ` t ) ^ 2 ) <_ ( R ^ 2 ) <-> ( t ^ 2 ) <_ ( R ^ 2 ) ) ) |
21 |
17 20
|
bitr4d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) <-> ( ( abs ` t ) ^ 2 ) <_ ( R ^ 2 ) ) ) |
22 |
|
recn |
|- ( t e. RR -> t e. CC ) |
23 |
22
|
abscld |
|- ( t e. RR -> ( abs ` t ) e. RR ) |
24 |
23
|
3ad2ant3 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( abs ` t ) e. RR ) |
25 |
|
simp1 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> R e. RR ) |
26 |
22
|
absge0d |
|- ( t e. RR -> 0 <_ ( abs ` t ) ) |
27 |
26
|
3ad2ant3 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> 0 <_ ( abs ` t ) ) |
28 |
|
simp2 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> 0 <_ R ) |
29 |
24 25 27 28
|
le2sqd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( abs ` t ) <_ R <-> ( ( abs ` t ) ^ 2 ) <_ ( R ^ 2 ) ) ) |
30 |
|
simp3 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> t e. RR ) |
31 |
30 25
|
absled |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( abs ` t ) <_ R <-> ( -u R <_ t /\ t <_ R ) ) ) |
32 |
21 29 31
|
3bitr2d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) <-> ( -u R <_ t /\ t <_ R ) ) ) |
33 |
32
|
biimprd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( -u R <_ t /\ t <_ R ) -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
34 |
33
|
3expa |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. RR ) -> ( ( -u R <_ t /\ t <_ R ) -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
35 |
34
|
exp4b |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. RR -> ( -u R <_ t -> ( t <_ R -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
36 |
35
|
3impd |
|- ( ( R e. RR /\ 0 <_ R ) -> ( ( t e. RR /\ -u R <_ t /\ t <_ R ) -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
37 |
13 36
|
sylbid |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
38 |
37
|
imp |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R [,] R ) ) -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
39 |
|
elrege0 |
|- ( ( ( R ^ 2 ) - ( t ^ 2 ) ) e. ( 0 [,) +oo ) <-> ( ( ( R ^ 2 ) - ( t ^ 2 ) ) e. RR /\ 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
40 |
10 38 39
|
sylanbrc |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R [,] R ) ) -> ( ( R ^ 2 ) - ( t ^ 2 ) ) e. ( 0 [,) +oo ) ) |
41 |
|
fvres |
|- ( ( ( R ^ 2 ) - ( t ^ 2 ) ) e. ( 0 [,) +oo ) -> ( ( sqrt |` ( 0 [,) +oo ) ) ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) = ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
42 |
40 41
|
syl |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R [,] R ) ) -> ( ( sqrt |` ( 0 [,) +oo ) ) ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) = ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
43 |
42
|
mpteq2dva |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( ( sqrt |` ( 0 [,) +oo ) ) ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) = ( t e. ( -u R [,] R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
44 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
45 |
44
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
46 |
|
ax-resscn |
|- RR C_ CC |
47 |
6 46
|
sstrdi |
|- ( R e. RR -> ( -u R [,] R ) C_ CC ) |
48 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( -u R [,] R ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) e. ( TopOn ` ( -u R [,] R ) ) ) |
49 |
45 47 48
|
sylancr |
|- ( R e. RR -> ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) e. ( TopOn ` ( -u R [,] R ) ) ) |
50 |
49
|
adantr |
|- ( ( R e. RR /\ 0 <_ R ) -> ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) e. ( TopOn ` ( -u R [,] R ) ) ) |
51 |
47
|
resmptd |
|- ( R e. RR -> ( ( t e. CC |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |` ( -u R [,] R ) ) = ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
52 |
45
|
a1i |
|- ( R e. RR -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
53 |
|
recn |
|- ( R e. RR -> R e. CC ) |
54 |
53
|
sqcld |
|- ( R e. RR -> ( R ^ 2 ) e. CC ) |
55 |
52 52 54
|
cnmptc |
|- ( R e. RR -> ( t e. CC |-> ( R ^ 2 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
56 |
44
|
sqcn |
|- ( t e. CC |-> ( t ^ 2 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
57 |
56
|
a1i |
|- ( R e. RR -> ( t e. CC |-> ( t ^ 2 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
58 |
44
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
59 |
58
|
a1i |
|- ( R e. RR -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
60 |
52 55 57 59
|
cnmpt12f |
|- ( R e. RR -> ( t e. CC |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
61 |
45
|
toponunii |
|- CC = U. ( TopOpen ` CCfld ) |
62 |
61
|
cnrest |
|- ( ( ( t e. CC |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ ( -u R [,] R ) C_ CC ) -> ( ( t e. CC |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |` ( -u R [,] R ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( TopOpen ` CCfld ) ) ) |
63 |
60 47 62
|
syl2anc |
|- ( R e. RR -> ( ( t e. CC |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |` ( -u R [,] R ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( TopOpen ` CCfld ) ) ) |
64 |
51 63
|
eqeltrrd |
|- ( R e. RR -> ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( TopOpen ` CCfld ) ) ) |
65 |
64
|
adantr |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( TopOpen ` CCfld ) ) ) |
66 |
45
|
a1i |
|- ( ( R e. RR /\ 0 <_ R ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
67 |
|
eqid |
|- ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) = ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
68 |
67
|
rnmpt |
|- ran ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) = { u | E. t e. ( -u R [,] R ) u = ( ( R ^ 2 ) - ( t ^ 2 ) ) } |
69 |
|
simp3 |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R [,] R ) /\ u = ( ( R ^ 2 ) - ( t ^ 2 ) ) ) -> u = ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
70 |
40
|
3adant3 |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R [,] R ) /\ u = ( ( R ^ 2 ) - ( t ^ 2 ) ) ) -> ( ( R ^ 2 ) - ( t ^ 2 ) ) e. ( 0 [,) +oo ) ) |
71 |
69 70
|
eqeltrd |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R [,] R ) /\ u = ( ( R ^ 2 ) - ( t ^ 2 ) ) ) -> u e. ( 0 [,) +oo ) ) |
72 |
71
|
rexlimdv3a |
|- ( ( R e. RR /\ 0 <_ R ) -> ( E. t e. ( -u R [,] R ) u = ( ( R ^ 2 ) - ( t ^ 2 ) ) -> u e. ( 0 [,) +oo ) ) ) |
73 |
72
|
abssdv |
|- ( ( R e. RR /\ 0 <_ R ) -> { u | E. t e. ( -u R [,] R ) u = ( ( R ^ 2 ) - ( t ^ 2 ) ) } C_ ( 0 [,) +oo ) ) |
74 |
68 73
|
eqsstrid |
|- ( ( R e. RR /\ 0 <_ R ) -> ran ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) C_ ( 0 [,) +oo ) ) |
75 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
76 |
75 46
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
77 |
76
|
a1i |
|- ( ( R e. RR /\ 0 <_ R ) -> ( 0 [,) +oo ) C_ CC ) |
78 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) C_ ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ CC ) -> ( ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( TopOpen ` CCfld ) ) <-> ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ) ) |
79 |
66 74 77 78
|
syl3anc |
|- ( ( R e. RR /\ 0 <_ R ) -> ( ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( TopOpen ` CCfld ) ) <-> ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ) ) |
80 |
65 79
|
mpbid |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ) |
81 |
|
ssid |
|- CC C_ CC |
82 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( 0 [,) +oo ) -cn-> RR ) C_ ( ( 0 [,) +oo ) -cn-> CC ) ) |
83 |
46 81 82
|
mp2an |
|- ( ( 0 [,) +oo ) -cn-> RR ) C_ ( ( 0 [,) +oo ) -cn-> CC ) |
84 |
|
resqrtcn |
|- ( sqrt |` ( 0 [,) +oo ) ) e. ( ( 0 [,) +oo ) -cn-> RR ) |
85 |
83 84
|
sselii |
|- ( sqrt |` ( 0 [,) +oo ) ) e. ( ( 0 [,) +oo ) -cn-> CC ) |
86 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) |
87 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( ( TopOpen ` CCfld ) |`t CC ) |
88 |
44 86 87
|
cncfcn |
|- ( ( ( 0 [,) +oo ) C_ CC /\ CC C_ CC ) -> ( ( 0 [,) +oo ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
89 |
76 81 88
|
mp2an |
|- ( ( 0 [,) +oo ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) |
90 |
85 89
|
eleqtri |
|- ( sqrt |` ( 0 [,) +oo ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) |
91 |
90
|
a1i |
|- ( ( R e. RR /\ 0 <_ R ) -> ( sqrt |` ( 0 [,) +oo ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
92 |
50 80 91
|
cnmpt11f |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( ( sqrt |` ( 0 [,) +oo ) ) ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
93 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) = ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) |
94 |
44 93 87
|
cncfcn |
|- ( ( ( -u R [,] R ) C_ CC /\ CC C_ CC ) -> ( ( -u R [,] R ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
95 |
47 81 94
|
sylancl |
|- ( R e. RR -> ( ( -u R [,] R ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
96 |
95
|
adantr |
|- ( ( R e. RR /\ 0 <_ R ) -> ( ( -u R [,] R ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( -u R [,] R ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
97 |
92 96
|
eleqtrrd |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( ( sqrt |` ( 0 [,) +oo ) ) ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
98 |
43 97
|
eqeltrrd |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |