Step |
Hyp |
Ref |
Expression |
1 |
|
resqcl |
|
2 |
1
|
adantr |
|
3 |
2
|
adantr |
|
4 |
|
renegcl |
|
5 |
|
iccssre |
|
6 |
4 5
|
mpancom |
|
7 |
6
|
sselda |
|
8 |
7
|
resqcld |
|
9 |
8
|
adantlr |
|
10 |
3 9
|
resubcld |
|
11 |
|
elicc2 |
|
12 |
4 11
|
mpancom |
|
13 |
12
|
adantr |
|
14 |
1
|
3ad2ant1 |
|
15 |
|
resqcl |
|
16 |
15
|
3ad2ant3 |
|
17 |
14 16
|
subge0d |
|
18 |
|
absresq |
|
19 |
18
|
3ad2ant3 |
|
20 |
19
|
breq1d |
|
21 |
17 20
|
bitr4d |
|
22 |
|
recn |
|
23 |
22
|
abscld |
|
24 |
23
|
3ad2ant3 |
|
25 |
|
simp1 |
|
26 |
22
|
absge0d |
|
27 |
26
|
3ad2ant3 |
|
28 |
|
simp2 |
|
29 |
24 25 27 28
|
le2sqd |
|
30 |
|
simp3 |
|
31 |
30 25
|
absled |
|
32 |
21 29 31
|
3bitr2d |
|
33 |
32
|
biimprd |
|
34 |
33
|
3expa |
|
35 |
34
|
exp4b |
|
36 |
35
|
3impd |
|
37 |
13 36
|
sylbid |
|
38 |
37
|
imp |
|
39 |
|
elrege0 |
|
40 |
10 38 39
|
sylanbrc |
|
41 |
|
fvres |
|
42 |
40 41
|
syl |
|
43 |
42
|
mpteq2dva |
|
44 |
|
eqid |
|
45 |
44
|
cnfldtopon |
|
46 |
|
ax-resscn |
|
47 |
6 46
|
sstrdi |
|
48 |
|
resttopon |
|
49 |
45 47 48
|
sylancr |
|
50 |
49
|
adantr |
|
51 |
47
|
resmptd |
|
52 |
45
|
a1i |
|
53 |
|
recn |
|
54 |
53
|
sqcld |
|
55 |
52 52 54
|
cnmptc |
|
56 |
44
|
sqcn |
|
57 |
56
|
a1i |
|
58 |
44
|
subcn |
|
59 |
58
|
a1i |
|
60 |
52 55 57 59
|
cnmpt12f |
|
61 |
45
|
toponunii |
|
62 |
61
|
cnrest |
|
63 |
60 47 62
|
syl2anc |
|
64 |
51 63
|
eqeltrrd |
|
65 |
64
|
adantr |
|
66 |
45
|
a1i |
|
67 |
|
eqid |
|
68 |
67
|
rnmpt |
|
69 |
|
simp3 |
|
70 |
40
|
3adant3 |
|
71 |
69 70
|
eqeltrd |
|
72 |
71
|
rexlimdv3a |
|
73 |
72
|
abssdv |
|
74 |
68 73
|
eqsstrid |
|
75 |
|
rge0ssre |
|
76 |
75 46
|
sstri |
|
77 |
76
|
a1i |
|
78 |
|
cnrest2 |
|
79 |
66 74 77 78
|
syl3anc |
|
80 |
65 79
|
mpbid |
|
81 |
|
ssid |
|
82 |
|
cncfss |
|
83 |
46 81 82
|
mp2an |
|
84 |
|
resqrtcn |
|
85 |
83 84
|
sselii |
|
86 |
|
eqid |
|
87 |
|
eqid |
|
88 |
44 86 87
|
cncfcn |
|
89 |
76 81 88
|
mp2an |
|
90 |
85 89
|
eleqtri |
|
91 |
90
|
a1i |
|
92 |
50 80 91
|
cnmpt11f |
|
93 |
|
eqid |
|
94 |
44 93 87
|
cncfcn |
|
95 |
47 81 94
|
sylancl |
|
96 |
95
|
adantr |
|
97 |
92 96
|
eleqtrrd |
|
98 |
43 97
|
eqeltrrd |
|