Step |
Hyp |
Ref |
Expression |
1 |
|
resqcl |
⊢ ( 𝑅 ∈ ℝ → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
2 |
1
|
adantr |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ∧ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ) → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
4 |
|
renegcl |
⊢ ( 𝑅 ∈ ℝ → - 𝑅 ∈ ℝ ) |
5 |
|
iccssre |
⊢ ( ( - 𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( - 𝑅 [,] 𝑅 ) ⊆ ℝ ) |
6 |
4 5
|
mpancom |
⊢ ( 𝑅 ∈ ℝ → ( - 𝑅 [,] 𝑅 ) ⊆ ℝ ) |
7 |
6
|
sselda |
⊢ ( ( 𝑅 ∈ ℝ ∧ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ) → 𝑡 ∈ ℝ ) |
8 |
7
|
resqcld |
⊢ ( ( 𝑅 ∈ ℝ ∧ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ) → ( 𝑡 ↑ 2 ) ∈ ℝ ) |
9 |
8
|
adantlr |
⊢ ( ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ∧ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ) → ( 𝑡 ↑ 2 ) ∈ ℝ ) |
10 |
3 9
|
resubcld |
⊢ ( ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ∧ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ) → ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ∈ ℝ ) |
11 |
|
elicc2 |
⊢ ( ( - 𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↔ ( 𝑡 ∈ ℝ ∧ - 𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) ) |
12 |
4 11
|
mpancom |
⊢ ( 𝑅 ∈ ℝ → ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↔ ( 𝑡 ∈ ℝ ∧ - 𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↔ ( 𝑡 ∈ ℝ ∧ - 𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) ) |
14 |
1
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
15 |
|
resqcl |
⊢ ( 𝑡 ∈ ℝ → ( 𝑡 ↑ 2 ) ∈ ℝ ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → ( 𝑡 ↑ 2 ) ∈ ℝ ) |
17 |
14 16
|
subge0d |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → ( 0 ≤ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ↔ ( 𝑡 ↑ 2 ) ≤ ( 𝑅 ↑ 2 ) ) ) |
18 |
|
absresq |
⊢ ( 𝑡 ∈ ℝ → ( ( abs ‘ 𝑡 ) ↑ 2 ) = ( 𝑡 ↑ 2 ) ) |
19 |
18
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ 𝑡 ) ↑ 2 ) = ( 𝑡 ↑ 2 ) ) |
20 |
19
|
breq1d |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → ( ( ( abs ‘ 𝑡 ) ↑ 2 ) ≤ ( 𝑅 ↑ 2 ) ↔ ( 𝑡 ↑ 2 ) ≤ ( 𝑅 ↑ 2 ) ) ) |
21 |
17 20
|
bitr4d |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → ( 0 ≤ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ↔ ( ( abs ‘ 𝑡 ) ↑ 2 ) ≤ ( 𝑅 ↑ 2 ) ) ) |
22 |
|
recn |
⊢ ( 𝑡 ∈ ℝ → 𝑡 ∈ ℂ ) |
23 |
22
|
abscld |
⊢ ( 𝑡 ∈ ℝ → ( abs ‘ 𝑡 ) ∈ ℝ ) |
24 |
23
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ 𝑡 ) ∈ ℝ ) |
25 |
|
simp1 |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → 𝑅 ∈ ℝ ) |
26 |
22
|
absge0d |
⊢ ( 𝑡 ∈ ℝ → 0 ≤ ( abs ‘ 𝑡 ) ) |
27 |
26
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ 𝑡 ) ) |
28 |
|
simp2 |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → 0 ≤ 𝑅 ) |
29 |
24 25 27 28
|
le2sqd |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ 𝑡 ) ≤ 𝑅 ↔ ( ( abs ‘ 𝑡 ) ↑ 2 ) ≤ ( 𝑅 ↑ 2 ) ) ) |
30 |
|
simp3 |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℝ ) |
31 |
30 25
|
absled |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ 𝑡 ) ≤ 𝑅 ↔ ( - 𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) ) |
32 |
21 29 31
|
3bitr2d |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → ( 0 ≤ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ↔ ( - 𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) ) |
33 |
32
|
biimprd |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ ) → ( ( - 𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) → 0 ≤ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) |
34 |
33
|
3expa |
⊢ ( ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ∧ 𝑡 ∈ ℝ ) → ( ( - 𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) → 0 ≤ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) |
35 |
34
|
exp4b |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( 𝑡 ∈ ℝ → ( - 𝑅 ≤ 𝑡 → ( 𝑡 ≤ 𝑅 → 0 ≤ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) ) ) |
36 |
35
|
3impd |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( ( 𝑡 ∈ ℝ ∧ - 𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) → 0 ≤ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) |
37 |
13 36
|
sylbid |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) → 0 ≤ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) |
38 |
37
|
imp |
⊢ ( ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ∧ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ) → 0 ≤ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) |
39 |
|
elrege0 |
⊢ ( ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) |
40 |
10 38 39
|
sylanbrc |
⊢ ( ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ∧ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ) → ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ∈ ( 0 [,) +∞ ) ) |
41 |
|
fvres |
⊢ ( ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ∈ ( 0 [,) +∞ ) → ( ( √ ↾ ( 0 [,) +∞ ) ) ‘ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) = ( √ ‘ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) |
42 |
40 41
|
syl |
⊢ ( ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ∧ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ) → ( ( √ ↾ ( 0 [,) +∞ ) ) ‘ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) = ( √ ‘ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) |
43 |
42
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( √ ↾ ( 0 [,) +∞ ) ) ‘ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) = ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( √ ‘ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) ) |
44 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
45 |
44
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
46 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
47 |
6 46
|
sstrdi |
⊢ ( 𝑅 ∈ ℝ → ( - 𝑅 [,] 𝑅 ) ⊆ ℂ ) |
48 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( - 𝑅 [,] 𝑅 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) ∈ ( TopOn ‘ ( - 𝑅 [,] 𝑅 ) ) ) |
49 |
45 47 48
|
sylancr |
⊢ ( 𝑅 ∈ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) ∈ ( TopOn ‘ ( - 𝑅 [,] 𝑅 ) ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) ∈ ( TopOn ‘ ( - 𝑅 [,] 𝑅 ) ) ) |
51 |
47
|
resmptd |
⊢ ( 𝑅 ∈ ℝ → ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ↾ ( - 𝑅 [,] 𝑅 ) ) = ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) |
52 |
45
|
a1i |
⊢ ( 𝑅 ∈ ℝ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
53 |
|
recn |
⊢ ( 𝑅 ∈ ℝ → 𝑅 ∈ ℂ ) |
54 |
53
|
sqcld |
⊢ ( 𝑅 ∈ ℝ → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
55 |
52 52 54
|
cnmptc |
⊢ ( 𝑅 ∈ ℝ → ( 𝑡 ∈ ℂ ↦ ( 𝑅 ↑ 2 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
56 |
44
|
sqcn |
⊢ ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 2 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
57 |
56
|
a1i |
⊢ ( 𝑅 ∈ ℝ → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 2 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
58 |
44
|
subcn |
⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
59 |
58
|
a1i |
⊢ ( 𝑅 ∈ ℝ → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
60 |
52 55 57 59
|
cnmpt12f |
⊢ ( 𝑅 ∈ ℝ → ( 𝑡 ∈ ℂ ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
61 |
45
|
toponunii |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
62 |
61
|
cnrest |
⊢ ( ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ( - 𝑅 [,] 𝑅 ) ⊆ ℂ ) → ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ↾ ( - 𝑅 [,] 𝑅 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
63 |
60 47 62
|
syl2anc |
⊢ ( 𝑅 ∈ ℝ → ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ↾ ( - 𝑅 [,] 𝑅 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
64 |
51 63
|
eqeltrrd |
⊢ ( 𝑅 ∈ ℝ → ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
65 |
64
|
adantr |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
66 |
45
|
a1i |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
67 |
|
eqid |
⊢ ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) = ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) |
68 |
67
|
rnmpt |
⊢ ran ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) = { 𝑢 ∣ ∃ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) 𝑢 = ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) } |
69 |
|
simp3 |
⊢ ( ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ∧ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ∧ 𝑢 = ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) → 𝑢 = ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) |
70 |
40
|
3adant3 |
⊢ ( ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ∧ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ∧ 𝑢 = ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) → ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ∈ ( 0 [,) +∞ ) ) |
71 |
69 70
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ∧ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ∧ 𝑢 = ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) → 𝑢 ∈ ( 0 [,) +∞ ) ) |
72 |
71
|
rexlimdv3a |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( ∃ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) 𝑢 = ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) → 𝑢 ∈ ( 0 [,) +∞ ) ) ) |
73 |
72
|
abssdv |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → { 𝑢 ∣ ∃ 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) 𝑢 = ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) } ⊆ ( 0 [,) +∞ ) ) |
74 |
68 73
|
eqsstrid |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ran ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ⊆ ( 0 [,) +∞ ) ) |
75 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
76 |
75 46
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
77 |
76
|
a1i |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( 0 [,) +∞ ) ⊆ ℂ ) |
78 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ⊆ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → ( ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) ) ) ) |
79 |
66 74 77 78
|
syl3anc |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) ) ) ) |
80 |
65 79
|
mpbid |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) ) ) |
81 |
|
ssid |
⊢ ℂ ⊆ ℂ |
82 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 0 [,) +∞ ) –cn→ ℝ ) ⊆ ( ( 0 [,) +∞ ) –cn→ ℂ ) ) |
83 |
46 81 82
|
mp2an |
⊢ ( ( 0 [,) +∞ ) –cn→ ℝ ) ⊆ ( ( 0 [,) +∞ ) –cn→ ℂ ) |
84 |
|
resqrtcn |
⊢ ( √ ↾ ( 0 [,) +∞ ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℝ ) |
85 |
83 84
|
sselii |
⊢ ( √ ↾ ( 0 [,) +∞ ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℂ ) |
86 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) |
87 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
88 |
44 86 87
|
cncfcn |
⊢ ( ( ( 0 [,) +∞ ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 0 [,) +∞ ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ) |
89 |
76 81 88
|
mp2an |
⊢ ( ( 0 [,) +∞ ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) |
90 |
85 89
|
eleqtri |
⊢ ( √ ↾ ( 0 [,) +∞ ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) |
91 |
90
|
a1i |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( √ ↾ ( 0 [,) +∞ ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ) |
92 |
50 80 91
|
cnmpt11f |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( √ ↾ ( 0 [,) +∞ ) ) ‘ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ) |
93 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) |
94 |
44 93 87
|
cncfcn |
⊢ ( ( ( - 𝑅 [,] 𝑅 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( - 𝑅 [,] 𝑅 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ) |
95 |
47 81 94
|
sylancl |
⊢ ( 𝑅 ∈ ℝ → ( ( - 𝑅 [,] 𝑅 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ) |
96 |
95
|
adantr |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( ( - 𝑅 [,] 𝑅 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 𝑅 [,] 𝑅 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ) |
97 |
92 96
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( ( √ ↾ ( 0 [,) +∞ ) ) ‘ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) ∈ ( ( - 𝑅 [,] 𝑅 ) –cn→ ℂ ) ) |
98 |
43 97
|
eqeltrrd |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → ( 𝑡 ∈ ( - 𝑅 [,] 𝑅 ) ↦ ( √ ‘ ( ( 𝑅 ↑ 2 ) − ( 𝑡 ↑ 2 ) ) ) ) ∈ ( ( - 𝑅 [,] 𝑅 ) –cn→ ℂ ) ) |