Metamath Proof Explorer


Theorem resqrtcn

Description: Continuity of the real square root function. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Assertion resqrtcn 0+∞:0+∞cn

Proof

Step Hyp Ref Expression
1 sqrtf :
2 1 a1i :
3 2 feqmptd =xx
4 3 reseq1d 0+∞=xx0+∞
5 elrege0 x0+∞x0x
6 5 simplbi x0+∞x
7 6 recnd x0+∞x
8 7 ssriv 0+∞
9 resmpt 0+∞xx0+∞=x0+∞x
10 8 9 mp1i xx0+∞=x0+∞x
11 4 10 eqtrd 0+∞=x0+∞x
12 11 mptru 0+∞=x0+∞x
13 eqid x0+∞x=x0+∞x
14 resqrtcl x0xx
15 5 14 sylbi x0+∞x
16 13 15 fmpti x0+∞x:0+∞
17 ax-resscn
18 cxpsqrt xx12=x
19 7 18 syl x0+∞x12=x
20 19 mpteq2ia x0+∞x12=x0+∞x
21 eqid TopOpenfld=TopOpenfld
22 21 cnfldtopon TopOpenfldTopOn
23 22 a1i TopOpenfldTopOn
24 resttopon TopOpenfldTopOn0+∞TopOpenfld𝑡0+∞TopOn0+∞
25 23 8 24 sylancl TopOpenfld𝑡0+∞TopOn0+∞
26 25 cnmptid x0+∞xTopOpenfld𝑡0+∞CnTopOpenfld𝑡0+∞
27 cnvimass -1+dom
28 ref :
29 28 fdmi dom=
30 27 29 sseqtri -1+
31 resttopon TopOpenfldTopOn-1+TopOpenfld𝑡-1+TopOn-1+
32 23 30 31 sylancl TopOpenfld𝑡-1+TopOn-1+
33 halfcn 12
34 1rp 1+
35 rphalfcl 1+12+
36 34 35 ax-mp 12+
37 rpre 12+12
38 rere 1212=12
39 36 37 38 mp2b 12=12
40 39 36 eqeltri 12+
41 ffn :Fn
42 elpreima Fn12-1+1212+
43 28 41 42 mp2b 12-1+1212+
44 33 40 43 mpbir2an 12-1+
45 44 a1i 12-1+
46 25 32 45 cnmptc x0+∞12TopOpenfld𝑡0+∞CnTopOpenfld𝑡-1+
47 eqid -1+=-1+
48 eqid TopOpenfld𝑡0+∞=TopOpenfld𝑡0+∞
49 eqid TopOpenfld𝑡-1+=TopOpenfld𝑡-1+
50 47 21 48 49 cxpcn3 y0+∞,z-1+yzTopOpenfld𝑡0+∞×tTopOpenfld𝑡-1+CnTopOpenfld
51 50 a1i y0+∞,z-1+yzTopOpenfld𝑡0+∞×tTopOpenfld𝑡-1+CnTopOpenfld
52 oveq12 y=xz=12yz=x12
53 25 26 46 25 32 51 52 cnmpt12 x0+∞x12TopOpenfld𝑡0+∞CnTopOpenfld
54 ssid
55 22 toponrestid TopOpenfld=TopOpenfld𝑡
56 21 48 55 cncfcn 0+∞0+∞cn=TopOpenfld𝑡0+∞CnTopOpenfld
57 8 54 56 mp2an 0+∞cn=TopOpenfld𝑡0+∞CnTopOpenfld
58 53 57 eleqtrrdi x0+∞x12:0+∞cn
59 20 58 eqeltrrid x0+∞x:0+∞cn
60 59 mptru x0+∞x:0+∞cn
61 cncfcdm x0+∞x:0+∞cnx0+∞x:0+∞cnx0+∞x:0+∞
62 17 60 61 mp2an x0+∞x:0+∞cnx0+∞x:0+∞
63 16 62 mpbir x0+∞x:0+∞cn
64 12 63 eqeltri 0+∞:0+∞cn