| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqrtf |
|
| 2 |
1
|
a1i |
|
| 3 |
2
|
feqmptd |
|
| 4 |
3
|
reseq1d |
|
| 5 |
|
elrege0 |
|
| 6 |
5
|
simplbi |
|
| 7 |
6
|
recnd |
|
| 8 |
7
|
ssriv |
|
| 9 |
|
resmpt |
|
| 10 |
8 9
|
mp1i |
|
| 11 |
4 10
|
eqtrd |
|
| 12 |
11
|
mptru |
|
| 13 |
|
eqid |
|
| 14 |
|
resqrtcl |
|
| 15 |
5 14
|
sylbi |
|
| 16 |
13 15
|
fmpti |
|
| 17 |
|
ax-resscn |
|
| 18 |
|
cxpsqrt |
|
| 19 |
7 18
|
syl |
|
| 20 |
19
|
mpteq2ia |
|
| 21 |
|
eqid |
|
| 22 |
21
|
cnfldtopon |
|
| 23 |
22
|
a1i |
|
| 24 |
|
resttopon |
|
| 25 |
23 8 24
|
sylancl |
|
| 26 |
25
|
cnmptid |
|
| 27 |
|
cnvimass |
|
| 28 |
|
ref |
|
| 29 |
28
|
fdmi |
|
| 30 |
27 29
|
sseqtri |
|
| 31 |
|
resttopon |
|
| 32 |
23 30 31
|
sylancl |
|
| 33 |
|
halfcn |
|
| 34 |
|
1rp |
|
| 35 |
|
rphalfcl |
|
| 36 |
34 35
|
ax-mp |
|
| 37 |
|
rpre |
|
| 38 |
|
rere |
|
| 39 |
36 37 38
|
mp2b |
|
| 40 |
39 36
|
eqeltri |
|
| 41 |
|
ffn |
|
| 42 |
|
elpreima |
|
| 43 |
28 41 42
|
mp2b |
|
| 44 |
33 40 43
|
mpbir2an |
|
| 45 |
44
|
a1i |
|
| 46 |
25 32 45
|
cnmptc |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
|
eqid |
|
| 50 |
47 21 48 49
|
cxpcn3 |
|
| 51 |
50
|
a1i |
|
| 52 |
|
oveq12 |
|
| 53 |
25 26 46 25 32 51 52
|
cnmpt12 |
|
| 54 |
|
ssid |
|
| 55 |
22
|
toponrestid |
|
| 56 |
21 48 55
|
cncfcn |
|
| 57 |
8 54 56
|
mp2an |
|
| 58 |
53 57
|
eleqtrrdi |
|
| 59 |
20 58
|
eqeltrrid |
|
| 60 |
59
|
mptru |
|
| 61 |
|
cncfcdm |
|
| 62 |
17 60 61
|
mp2an |
|
| 63 |
16 62
|
mpbir |
|
| 64 |
12 63
|
eqeltri |
|