Metamath Proof Explorer


Theorem cxpcn3

Description: Extend continuity of the complex power function to a base of zero, as long as the exponent has strictly positive real part. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses cxpcn3.d D=-1+
cxpcn3.j J=TopOpenfld
cxpcn3.k K=J𝑡0+∞
cxpcn3.l L=J𝑡D
Assertion cxpcn3 x0+∞,yDxyK×tLCnJ

Proof

Step Hyp Ref Expression
1 cxpcn3.d D=-1+
2 cxpcn3.j J=TopOpenfld
3 cxpcn3.k K=J𝑡0+∞
4 cxpcn3.l L=J𝑡D
5 rge0ssre 0+∞
6 ax-resscn
7 5 6 sstri 0+∞
8 7 sseli x0+∞x
9 cnvimass -1+dom
10 ref :
11 10 fdmi dom=
12 9 11 sseqtri -1+
13 1 12 eqsstri D
14 13 sseli yDy
15 cxpcl xyxy
16 8 14 15 syl2an x0+∞yDxy
17 16 rgen2 x0+∞yDxy
18 eqid x0+∞,yDxy=x0+∞,yDxy
19 18 fmpo x0+∞yDxyx0+∞,yDxy:0+∞×D
20 17 19 mpbi x0+∞,yDxy:0+∞×D
21 2 cnfldtopon JTopOn
22 rpre x+x
23 rpge0 x+0x
24 elrege0 x0+∞x0x
25 22 23 24 sylanbrc x+x0+∞
26 25 ssriv +0+∞
27 26 7 sstri +
28 resttopon JTopOn+J𝑡+TopOn+
29 21 27 28 mp2an J𝑡+TopOn+
30 29 toponrestid J𝑡+=J𝑡+𝑡+
31 29 a1i u0+∞vD0<uJ𝑡+TopOn+
32 ssid ++
33 32 a1i u0+∞vD0<u++
34 21 a1i u0+∞vD0<uJTopOn
35 13 a1i u0+∞vD0<uD
36 eqid J𝑡+=J𝑡+
37 2 36 cxpcn2 x+,yxyJ𝑡+×tJCnJ
38 37 a1i u0+∞vD0<ux+,yxyJ𝑡+×tJCnJ
39 30 31 33 4 34 35 38 cnmpt2res u0+∞vD0<ux+,yDxyJ𝑡+×tLCnJ
40 elrege0 u0+∞u0u
41 40 simplbi u0+∞u
42 41 adantr u0+∞vDu
43 42 adantr u0+∞vD0<uu
44 simpr u0+∞vD0<u0<u
45 43 44 elrpd u0+∞vD0<uu+
46 simplr u0+∞vD0<uvD
47 45 46 opelxpd u0+∞vD0<uuv+×D
48 resttopon JTopOnDJ𝑡DTopOnD
49 21 13 48 mp2an J𝑡DTopOnD
50 4 49 eqeltri LTopOnD
51 txtopon J𝑡+TopOn+LTopOnDJ𝑡+×tLTopOn+×D
52 29 50 51 mp2an J𝑡+×tLTopOn+×D
53 52 toponunii +×D=J𝑡+×tL
54 53 cncnpi x+,yDxyJ𝑡+×tLCnJuv+×Dx+,yDxyJ𝑡+×tLCnPJuv
55 39 47 54 syl2anc u0+∞vD0<ux+,yDxyJ𝑡+×tLCnPJuv
56 ssid DD
57 resmpo +0+∞DDx0+∞,yDxy+×D=x+,yDxy
58 26 56 57 mp2an x0+∞,yDxy+×D=x+,yDxy
59 resttopon JTopOn0+∞J𝑡0+∞TopOn0+∞
60 21 7 59 mp2an J𝑡0+∞TopOn0+∞
61 3 60 eqeltri KTopOn0+∞
62 ioorp 0+∞=+
63 iooretop 0+∞topGenran.
64 62 63 eqeltrri +topGenran.
65 retop topGenran.Top
66 ovex 0+∞V
67 restopnb topGenran.Top0+∞V+topGenran.+0+∞+++topGenran.+topGenran.𝑡0+∞
68 65 66 67 mpanl12 +topGenran.+0+∞+++topGenran.+topGenran.𝑡0+∞
69 64 26 32 68 mp3an +topGenran.+topGenran.𝑡0+∞
70 64 69 mpbi +topGenran.𝑡0+∞
71 eqid topGenran.=topGenran.
72 2 71 rerest 0+∞J𝑡0+∞=topGenran.𝑡0+∞
73 5 72 ax-mp J𝑡0+∞=topGenran.𝑡0+∞
74 3 73 eqtri K=topGenran.𝑡0+∞
75 70 74 eleqtrri +K
76 toponmax LTopOnDDL
77 50 76 ax-mp DL
78 txrest KTopOn0+∞LTopOnD+KDLK×tL𝑡+×D=K𝑡+×tL𝑡D
79 61 50 75 77 78 mp4an K×tL𝑡+×D=K𝑡+×tL𝑡D
80 3 oveq1i K𝑡+=J𝑡0+∞𝑡+
81 restabs JTopOn+0+∞0+∞VJ𝑡0+∞𝑡+=J𝑡+
82 21 26 66 81 mp3an J𝑡0+∞𝑡+=J𝑡+
83 80 82 eqtri K𝑡+=J𝑡+
84 50 toponunii D=L
85 84 restid LTopOnDL𝑡D=L
86 50 85 ax-mp L𝑡D=L
87 83 86 oveq12i K𝑡+×tL𝑡D=J𝑡+×tL
88 79 87 eqtri K×tL𝑡+×D=J𝑡+×tL
89 88 oveq1i K×tL𝑡+×DCnPJ=J𝑡+×tLCnPJ
90 89 fveq1i K×tL𝑡+×DCnPJuv=J𝑡+×tLCnPJuv
91 55 58 90 3eltr4g u0+∞vD0<ux0+∞,yDxy+×DK×tL𝑡+×DCnPJuv
92 txtopon KTopOn0+∞LTopOnDK×tLTopOn0+∞×D
93 61 50 92 mp2an K×tLTopOn0+∞×D
94 93 topontopi K×tLTop
95 94 a1i u0+∞vD0<uK×tLTop
96 xpss1 +0+∞+×D0+∞×D
97 26 96 mp1i u0+∞vD0<u+×D0+∞×D
98 txopn KTopOn0+∞LTopOnD+KDL+×DK×tL
99 61 50 75 77 98 mp4an +×DK×tL
100 isopn3i K×tLTop+×DK×tLintK×tL+×D=+×D
101 94 99 100 mp2an intK×tL+×D=+×D
102 47 101 eleqtrrdi u0+∞vD0<uuvintK×tL+×D
103 20 a1i u0+∞vD0<ux0+∞,yDxy:0+∞×D
104 61 topontopi KTop
105 50 topontopi LTop
106 61 toponunii 0+∞=K
107 104 105 106 84 txunii 0+∞×D=K×tL
108 21 toponunii =J
109 107 108 cnprest K×tLTop+×D0+∞×DuvintK×tL+×Dx0+∞,yDxy:0+∞×Dx0+∞,yDxyK×tLCnPJuvx0+∞,yDxy+×DK×tL𝑡+×DCnPJuv
110 95 97 102 103 109 syl22anc u0+∞vD0<ux0+∞,yDxyK×tLCnPJuvx0+∞,yDxy+×DK×tL𝑡+×DCnPJuv
111 91 110 mpbird u0+∞vD0<ux0+∞,yDxyK×tLCnPJuv
112 20 a1i vDx0+∞,yDxy:0+∞×D
113 eqid ifv1v12=ifv1v12
114 eqid ififv1v12e1ifv1v12ifv1v12e1ifv1v12=ififv1v12e1ifv1v12ifv1v12e1ifv1v12
115 1 2 3 4 113 114 cxpcn3lem vDe+d+a0+∞bDa<dvb<dab<e
116 115 ralrimiva vDe+d+a0+∞bDa<dvb<dab<e
117 0e0icopnf 00+∞
118 117 a1i vDa0+∞bD00+∞
119 simprl vDa0+∞bDa0+∞
120 118 119 ovresd vDa0+∞bD0abs0+∞×0+∞a=0absa
121 0cn 0
122 7 119 sselid vDa0+∞bDa
123 eqid abs=abs
124 123 cnmetdval 0a0absa=0a
125 121 122 124 sylancr vDa0+∞bD0absa=0a
126 df-neg a=0a
127 126 fveq2i a=0a
128 122 absnegd vDa0+∞bDa=a
129 127 128 eqtr3id vDa0+∞bD0a=a
130 120 125 129 3eqtrd vDa0+∞bD0abs0+∞×0+∞a=a
131 130 breq1d vDa0+∞bD0abs0+∞×0+∞a<da<d
132 simpl vDa0+∞bDvD
133 simprr vDa0+∞bDbD
134 132 133 ovresd vDa0+∞bDvabsD×Db=vabsb
135 13 132 sselid vDa0+∞bDv
136 13 133 sselid vDa0+∞bDb
137 123 cnmetdval vbvabsb=vb
138 135 136 137 syl2anc vDa0+∞bDvabsb=vb
139 134 138 eqtrd vDa0+∞bDvabsD×Db=vb
140 139 breq1d vDa0+∞bDvabsD×Db<dvb<d
141 131 140 anbi12d vDa0+∞bD0abs0+∞×0+∞a<dvabsD×Db<da<dvb<d
142 oveq12 x=0y=vxy=0v
143 ovex 0vV
144 142 18 143 ovmpoa 00+∞vD0x0+∞,yDxyv=0v
145 117 132 144 sylancr vDa0+∞bD0x0+∞,yDxyv=0v
146 1 eleq2i vDv-1+
147 ffn :Fn
148 elpreima Fnv-1+vv+
149 10 147 148 mp2b v-1+vv+
150 146 149 bitri vDvv+
151 150 simplbi vDv
152 150 simprbi vDv+
153 152 rpne0d vDv0
154 fveq2 v=0v=0
155 re0 0=0
156 154 155 eqtrdi v=0v=0
157 156 necon3i v0v0
158 153 157 syl vDv0
159 151 158 0cxpd vD0v=0
160 159 adantr vDa0+∞bD0v=0
161 145 160 eqtrd vDa0+∞bD0x0+∞,yDxyv=0
162 oveq12 x=ay=bxy=ab
163 ovex abV
164 162 18 163 ovmpoa a0+∞bDax0+∞,yDxyb=ab
165 164 adantl vDa0+∞bDax0+∞,yDxyb=ab
166 161 165 oveq12d vDa0+∞bD0x0+∞,yDxyvabsax0+∞,yDxyb=0absab
167 122 136 cxpcld vDa0+∞bDab
168 123 cnmetdval 0ab0absab=0ab
169 121 167 168 sylancr vDa0+∞bD0absab=0ab
170 df-neg ab=0ab
171 170 fveq2i ab=0ab
172 167 absnegd vDa0+∞bDab=ab
173 171 172 eqtr3id vDa0+∞bD0ab=ab
174 166 169 173 3eqtrd vDa0+∞bD0x0+∞,yDxyvabsax0+∞,yDxyb=ab
175 174 breq1d vDa0+∞bD0x0+∞,yDxyvabsax0+∞,yDxyb<eab<e
176 141 175 imbi12d vDa0+∞bD0abs0+∞×0+∞a<dvabsD×Db<d0x0+∞,yDxyvabsax0+∞,yDxyb<ea<dvb<dab<e
177 176 2ralbidva vDa0+∞bD0abs0+∞×0+∞a<dvabsD×Db<d0x0+∞,yDxyvabsax0+∞,yDxyb<ea0+∞bDa<dvb<dab<e
178 177 rexbidv vDd+a0+∞bD0abs0+∞×0+∞a<dvabsD×Db<d0x0+∞,yDxyvabsax0+∞,yDxyb<ed+a0+∞bDa<dvb<dab<e
179 178 ralbidv vDe+d+a0+∞bD0abs0+∞×0+∞a<dvabsD×Db<d0x0+∞,yDxyvabsax0+∞,yDxyb<ee+d+a0+∞bDa<dvb<dab<e
180 116 179 mpbird vDe+d+a0+∞bD0abs0+∞×0+∞a<dvabsD×Db<d0x0+∞,yDxyvabsax0+∞,yDxyb<e
181 cnxmet abs∞Met
182 181 a1i vDabs∞Met
183 xmetres2 abs∞Met0+∞abs0+∞×0+∞∞Met0+∞
184 182 7 183 sylancl vDabs0+∞×0+∞∞Met0+∞
185 xmetres2 abs∞MetDabsD×D∞MetD
186 182 13 185 sylancl vDabsD×D∞MetD
187 117 a1i vD00+∞
188 id vDvD
189 eqid abs0+∞×0+∞=abs0+∞×0+∞
190 2 cnfldtopn J=MetOpenabs
191 eqid MetOpenabs0+∞×0+∞=MetOpenabs0+∞×0+∞
192 189 190 191 metrest abs∞Met0+∞J𝑡0+∞=MetOpenabs0+∞×0+∞
193 181 7 192 mp2an J𝑡0+∞=MetOpenabs0+∞×0+∞
194 3 193 eqtri K=MetOpenabs0+∞×0+∞
195 eqid absD×D=absD×D
196 eqid MetOpenabsD×D=MetOpenabsD×D
197 195 190 196 metrest abs∞MetDJ𝑡D=MetOpenabsD×D
198 181 13 197 mp2an J𝑡D=MetOpenabsD×D
199 4 198 eqtri L=MetOpenabsD×D
200 194 199 190 txmetcnp abs0+∞×0+∞∞Met0+∞absD×D∞MetDabs∞Met00+∞vDx0+∞,yDxyK×tLCnPJ0vx0+∞,yDxy:0+∞×De+d+a0+∞bD0abs0+∞×0+∞a<dvabsD×Db<d0x0+∞,yDxyvabsax0+∞,yDxyb<e
201 184 186 182 187 188 200 syl32anc vDx0+∞,yDxyK×tLCnPJ0vx0+∞,yDxy:0+∞×De+d+a0+∞bD0abs0+∞×0+∞a<dvabsD×Db<d0x0+∞,yDxyvabsax0+∞,yDxyb<e
202 112 180 201 mpbir2and vDx0+∞,yDxyK×tLCnPJ0v
203 202 ad2antlr u0+∞vD0=ux0+∞,yDxyK×tLCnPJ0v
204 simpr u0+∞vD0=u0=u
205 204 opeq1d u0+∞vD0=u0v=uv
206 205 fveq2d u0+∞vD0=uK×tLCnPJ0v=K×tLCnPJuv
207 203 206 eleqtrd u0+∞vD0=ux0+∞,yDxyK×tLCnPJuv
208 40 simprbi u0+∞0u
209 208 adantr u0+∞vD0u
210 0re 0
211 leloe 0u0u0<u0=u
212 210 42 211 sylancr u0+∞vD0u0<u0=u
213 209 212 mpbid u0+∞vD0<u0=u
214 111 207 213 mpjaodan u0+∞vDx0+∞,yDxyK×tLCnPJuv
215 214 rgen2 u0+∞vDx0+∞,yDxyK×tLCnPJuv
216 fveq2 z=uvK×tLCnPJz=K×tLCnPJuv
217 216 eleq2d z=uvx0+∞,yDxyK×tLCnPJzx0+∞,yDxyK×tLCnPJuv
218 217 ralxp z0+∞×Dx0+∞,yDxyK×tLCnPJzu0+∞vDx0+∞,yDxyK×tLCnPJuv
219 215 218 mpbir z0+∞×Dx0+∞,yDxyK×tLCnPJz
220 cncnp K×tLTopOn0+∞×DJTopOnx0+∞,yDxyK×tLCnJx0+∞,yDxy:0+∞×Dz0+∞×Dx0+∞,yDxyK×tLCnPJz
221 93 21 220 mp2an x0+∞,yDxyK×tLCnJx0+∞,yDxy:0+∞×Dz0+∞×Dx0+∞,yDxyK×tLCnPJz
222 20 219 221 mpbir2an x0+∞,yDxyK×tLCnJ