| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqrtf |
|- sqrt : CC --> CC |
| 2 |
1
|
a1i |
|- ( T. -> sqrt : CC --> CC ) |
| 3 |
2
|
feqmptd |
|- ( T. -> sqrt = ( x e. CC |-> ( sqrt ` x ) ) ) |
| 4 |
3
|
reseq1d |
|- ( T. -> ( sqrt |` ( 0 [,) +oo ) ) = ( ( x e. CC |-> ( sqrt ` x ) ) |` ( 0 [,) +oo ) ) ) |
| 5 |
|
elrege0 |
|- ( x e. ( 0 [,) +oo ) <-> ( x e. RR /\ 0 <_ x ) ) |
| 6 |
5
|
simplbi |
|- ( x e. ( 0 [,) +oo ) -> x e. RR ) |
| 7 |
6
|
recnd |
|- ( x e. ( 0 [,) +oo ) -> x e. CC ) |
| 8 |
7
|
ssriv |
|- ( 0 [,) +oo ) C_ CC |
| 9 |
|
resmpt |
|- ( ( 0 [,) +oo ) C_ CC -> ( ( x e. CC |-> ( sqrt ` x ) ) |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) ) |
| 10 |
8 9
|
mp1i |
|- ( T. -> ( ( x e. CC |-> ( sqrt ` x ) ) |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) ) |
| 11 |
4 10
|
eqtrd |
|- ( T. -> ( sqrt |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) ) |
| 12 |
11
|
mptru |
|- ( sqrt |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) |
| 13 |
|
eqid |
|- ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) = ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) |
| 14 |
|
resqrtcl |
|- ( ( x e. RR /\ 0 <_ x ) -> ( sqrt ` x ) e. RR ) |
| 15 |
5 14
|
sylbi |
|- ( x e. ( 0 [,) +oo ) -> ( sqrt ` x ) e. RR ) |
| 16 |
13 15
|
fmpti |
|- ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) : ( 0 [,) +oo ) --> RR |
| 17 |
|
ax-resscn |
|- RR C_ CC |
| 18 |
|
cxpsqrt |
|- ( x e. CC -> ( x ^c ( 1 / 2 ) ) = ( sqrt ` x ) ) |
| 19 |
7 18
|
syl |
|- ( x e. ( 0 [,) +oo ) -> ( x ^c ( 1 / 2 ) ) = ( sqrt ` x ) ) |
| 20 |
19
|
mpteq2ia |
|- ( x e. ( 0 [,) +oo ) |-> ( x ^c ( 1 / 2 ) ) ) = ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) |
| 21 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 22 |
21
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 23 |
22
|
a1i |
|- ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 24 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( 0 [,) +oo ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) e. ( TopOn ` ( 0 [,) +oo ) ) ) |
| 25 |
23 8 24
|
sylancl |
|- ( T. -> ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) e. ( TopOn ` ( 0 [,) +oo ) ) ) |
| 26 |
25
|
cnmptid |
|- ( T. -> ( x e. ( 0 [,) +oo ) |-> x ) e. ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ) |
| 27 |
|
cnvimass |
|- ( `' Re " RR+ ) C_ dom Re |
| 28 |
|
ref |
|- Re : CC --> RR |
| 29 |
28
|
fdmi |
|- dom Re = CC |
| 30 |
27 29
|
sseqtri |
|- ( `' Re " RR+ ) C_ CC |
| 31 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( `' Re " RR+ ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( `' Re " RR+ ) ) e. ( TopOn ` ( `' Re " RR+ ) ) ) |
| 32 |
23 30 31
|
sylancl |
|- ( T. -> ( ( TopOpen ` CCfld ) |`t ( `' Re " RR+ ) ) e. ( TopOn ` ( `' Re " RR+ ) ) ) |
| 33 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 34 |
|
1rp |
|- 1 e. RR+ |
| 35 |
|
rphalfcl |
|- ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
| 36 |
34 35
|
ax-mp |
|- ( 1 / 2 ) e. RR+ |
| 37 |
|
rpre |
|- ( ( 1 / 2 ) e. RR+ -> ( 1 / 2 ) e. RR ) |
| 38 |
|
rere |
|- ( ( 1 / 2 ) e. RR -> ( Re ` ( 1 / 2 ) ) = ( 1 / 2 ) ) |
| 39 |
36 37 38
|
mp2b |
|- ( Re ` ( 1 / 2 ) ) = ( 1 / 2 ) |
| 40 |
39 36
|
eqeltri |
|- ( Re ` ( 1 / 2 ) ) e. RR+ |
| 41 |
|
ffn |
|- ( Re : CC --> RR -> Re Fn CC ) |
| 42 |
|
elpreima |
|- ( Re Fn CC -> ( ( 1 / 2 ) e. ( `' Re " RR+ ) <-> ( ( 1 / 2 ) e. CC /\ ( Re ` ( 1 / 2 ) ) e. RR+ ) ) ) |
| 43 |
28 41 42
|
mp2b |
|- ( ( 1 / 2 ) e. ( `' Re " RR+ ) <-> ( ( 1 / 2 ) e. CC /\ ( Re ` ( 1 / 2 ) ) e. RR+ ) ) |
| 44 |
33 40 43
|
mpbir2an |
|- ( 1 / 2 ) e. ( `' Re " RR+ ) |
| 45 |
44
|
a1i |
|- ( T. -> ( 1 / 2 ) e. ( `' Re " RR+ ) ) |
| 46 |
25 32 45
|
cnmptc |
|- ( T. -> ( x e. ( 0 [,) +oo ) |-> ( 1 / 2 ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) Cn ( ( TopOpen ` CCfld ) |`t ( `' Re " RR+ ) ) ) ) |
| 47 |
|
eqid |
|- ( `' Re " RR+ ) = ( `' Re " RR+ ) |
| 48 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) |
| 49 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( `' Re " RR+ ) ) = ( ( TopOpen ` CCfld ) |`t ( `' Re " RR+ ) ) |
| 50 |
47 21 48 49
|
cxpcn3 |
|- ( y e. ( 0 [,) +oo ) , z e. ( `' Re " RR+ ) |-> ( y ^c z ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) tX ( ( TopOpen ` CCfld ) |`t ( `' Re " RR+ ) ) ) Cn ( TopOpen ` CCfld ) ) |
| 51 |
50
|
a1i |
|- ( T. -> ( y e. ( 0 [,) +oo ) , z e. ( `' Re " RR+ ) |-> ( y ^c z ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) tX ( ( TopOpen ` CCfld ) |`t ( `' Re " RR+ ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 52 |
|
oveq12 |
|- ( ( y = x /\ z = ( 1 / 2 ) ) -> ( y ^c z ) = ( x ^c ( 1 / 2 ) ) ) |
| 53 |
25 26 46 25 32 51 52
|
cnmpt12 |
|- ( T. -> ( x e. ( 0 [,) +oo ) |-> ( x ^c ( 1 / 2 ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 54 |
|
ssid |
|- CC C_ CC |
| 55 |
22
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 56 |
21 48 55
|
cncfcn |
|- ( ( ( 0 [,) +oo ) C_ CC /\ CC C_ CC ) -> ( ( 0 [,) +oo ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 57 |
8 54 56
|
mp2an |
|- ( ( 0 [,) +oo ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) Cn ( TopOpen ` CCfld ) ) |
| 58 |
53 57
|
eleqtrrdi |
|- ( T. -> ( x e. ( 0 [,) +oo ) |-> ( x ^c ( 1 / 2 ) ) ) e. ( ( 0 [,) +oo ) -cn-> CC ) ) |
| 59 |
20 58
|
eqeltrrid |
|- ( T. -> ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) e. ( ( 0 [,) +oo ) -cn-> CC ) ) |
| 60 |
59
|
mptru |
|- ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) e. ( ( 0 [,) +oo ) -cn-> CC ) |
| 61 |
|
cncfcdm |
|- ( ( RR C_ CC /\ ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) e. ( ( 0 [,) +oo ) -cn-> CC ) ) -> ( ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) e. ( ( 0 [,) +oo ) -cn-> RR ) <-> ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) : ( 0 [,) +oo ) --> RR ) ) |
| 62 |
17 60 61
|
mp2an |
|- ( ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) e. ( ( 0 [,) +oo ) -cn-> RR ) <-> ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) : ( 0 [,) +oo ) --> RR ) |
| 63 |
16 62
|
mpbir |
|- ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) e. ( ( 0 [,) +oo ) -cn-> RR ) |
| 64 |
12 63
|
eqeltri |
|- ( sqrt |` ( 0 [,) +oo ) ) e. ( ( 0 [,) +oo ) -cn-> RR ) |