| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asinval |
|- ( A e. CC -> ( arcsin ` A ) = ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 2 |
1
|
fveq2d |
|- ( A e. CC -> ( Re ` ( arcsin ` A ) ) = ( Re ` ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 3 |
|
ax-icn |
|- _i e. CC |
| 4 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 5 |
3 4
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
| 6 |
|
ax-1cn |
|- 1 e. CC |
| 7 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
| 8 |
|
subcl |
|- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 9 |
6 7 8
|
sylancr |
|- ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 10 |
9
|
sqrtcld |
|- ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) |
| 11 |
5 10
|
addcld |
|- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC ) |
| 12 |
|
asinlem |
|- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) |
| 13 |
11 12
|
logcld |
|- ( A e. CC -> ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) |
| 14 |
|
imre |
|- ( ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( Re ` ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 15 |
13 14
|
syl |
|- ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( Re ` ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 16 |
2 15
|
eqtr4d |
|- ( A e. CC -> ( Re ` ( arcsin ` A ) ) = ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 17 |
|
asinlem3 |
|- ( A e. CC -> 0 <_ ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 18 |
|
argrege0 |
|- ( ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 /\ 0 <_ ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 19 |
11 12 17 18
|
syl3anc |
|- ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 20 |
16 19
|
eqeltrd |
|- ( A e. CC -> ( Re ` ( arcsin ` A ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |