| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atanbnd |  |-  ( A e. RR -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 2 |  | atanbnd |  |-  ( B e. RR -> ( arctan ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 3 |  | tanord |  |-  ( ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ ( arctan ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( arctan ` A ) < ( arctan ` B ) <-> ( tan ` ( arctan ` A ) ) < ( tan ` ( arctan ` B ) ) ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( arctan ` A ) < ( arctan ` B ) <-> ( tan ` ( arctan ` A ) ) < ( tan ` ( arctan ` B ) ) ) ) | 
						
							| 5 |  | atanre |  |-  ( A e. RR -> A e. dom arctan ) | 
						
							| 6 |  | tanatan |  |-  ( A e. dom arctan -> ( tan ` ( arctan ` A ) ) = A ) | 
						
							| 7 | 5 6 | syl |  |-  ( A e. RR -> ( tan ` ( arctan ` A ) ) = A ) | 
						
							| 8 |  | atanre |  |-  ( B e. RR -> B e. dom arctan ) | 
						
							| 9 |  | tanatan |  |-  ( B e. dom arctan -> ( tan ` ( arctan ` B ) ) = B ) | 
						
							| 10 | 8 9 | syl |  |-  ( B e. RR -> ( tan ` ( arctan ` B ) ) = B ) | 
						
							| 11 | 7 10 | breqan12d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( tan ` ( arctan ` A ) ) < ( tan ` ( arctan ` B ) ) <-> A < B ) ) | 
						
							| 12 | 4 11 | bitr2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( arctan ` A ) < ( arctan ` B ) ) ) |