| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atanre |
|- ( A e. RR -> A e. dom arctan ) |
| 2 |
1
|
adantr |
|- ( ( A e. RR /\ A < 0 ) -> A e. dom arctan ) |
| 3 |
|
atanneg |
|- ( A e. dom arctan -> ( arctan ` -u A ) = -u ( arctan ` A ) ) |
| 4 |
2 3
|
syl |
|- ( ( A e. RR /\ A < 0 ) -> ( arctan ` -u A ) = -u ( arctan ` A ) ) |
| 5 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 6 |
5
|
adantr |
|- ( ( A e. RR /\ A < 0 ) -> -u A e. RR ) |
| 7 |
|
lt0neg1 |
|- ( A e. RR -> ( A < 0 <-> 0 < -u A ) ) |
| 8 |
7
|
biimpa |
|- ( ( A e. RR /\ A < 0 ) -> 0 < -u A ) |
| 9 |
6 8
|
elrpd |
|- ( ( A e. RR /\ A < 0 ) -> -u A e. RR+ ) |
| 10 |
|
atanbndlem |
|- ( -u A e. RR+ -> ( arctan ` -u A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 11 |
9 10
|
syl |
|- ( ( A e. RR /\ A < 0 ) -> ( arctan ` -u A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 12 |
4 11
|
eqeltrrd |
|- ( ( A e. RR /\ A < 0 ) -> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 13 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 14 |
13
|
recni |
|- ( _pi / 2 ) e. CC |
| 15 |
14
|
negnegi |
|- -u -u ( _pi / 2 ) = ( _pi / 2 ) |
| 16 |
15
|
oveq2i |
|- ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) = ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) |
| 17 |
12 16
|
eleqtrrdi |
|- ( ( A e. RR /\ A < 0 ) -> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) |
| 18 |
|
neghalfpire |
|- -u ( _pi / 2 ) e. RR |
| 19 |
|
atanrecl |
|- ( A e. RR -> ( arctan ` A ) e. RR ) |
| 20 |
19
|
adantr |
|- ( ( A e. RR /\ A < 0 ) -> ( arctan ` A ) e. RR ) |
| 21 |
|
iooneg |
|- ( ( -u ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR /\ ( arctan ` A ) e. RR ) -> ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) ) |
| 22 |
18 13 20 21
|
mp3an12i |
|- ( ( A e. RR /\ A < 0 ) -> ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) ) |
| 23 |
17 22
|
mpbird |
|- ( ( A e. RR /\ A < 0 ) -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 24 |
|
simpr |
|- ( ( A e. RR /\ A = 0 ) -> A = 0 ) |
| 25 |
24
|
fveq2d |
|- ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) = ( arctan ` 0 ) ) |
| 26 |
|
atan0 |
|- ( arctan ` 0 ) = 0 |
| 27 |
25 26
|
eqtrdi |
|- ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) = 0 ) |
| 28 |
|
0re |
|- 0 e. RR |
| 29 |
|
pirp |
|- _pi e. RR+ |
| 30 |
|
rphalfcl |
|- ( _pi e. RR+ -> ( _pi / 2 ) e. RR+ ) |
| 31 |
|
rpgt0 |
|- ( ( _pi / 2 ) e. RR+ -> 0 < ( _pi / 2 ) ) |
| 32 |
29 30 31
|
mp2b |
|- 0 < ( _pi / 2 ) |
| 33 |
|
lt0neg2 |
|- ( ( _pi / 2 ) e. RR -> ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) ) |
| 34 |
13 33
|
ax-mp |
|- ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) |
| 35 |
32 34
|
mpbi |
|- -u ( _pi / 2 ) < 0 |
| 36 |
18
|
rexri |
|- -u ( _pi / 2 ) e. RR* |
| 37 |
13
|
rexri |
|- ( _pi / 2 ) e. RR* |
| 38 |
|
elioo2 |
|- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( 0 e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( 0 e. RR /\ -u ( _pi / 2 ) < 0 /\ 0 < ( _pi / 2 ) ) ) ) |
| 39 |
36 37 38
|
mp2an |
|- ( 0 e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( 0 e. RR /\ -u ( _pi / 2 ) < 0 /\ 0 < ( _pi / 2 ) ) ) |
| 40 |
28 35 32 39
|
mpbir3an |
|- 0 e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) |
| 41 |
27 40
|
eqeltrdi |
|- ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 42 |
|
elrp |
|- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
| 43 |
|
atanbndlem |
|- ( A e. RR+ -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 44 |
42 43
|
sylbir |
|- ( ( A e. RR /\ 0 < A ) -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 45 |
|
lttri4 |
|- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
| 46 |
28 45
|
mpan2 |
|- ( A e. RR -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
| 47 |
23 41 44 46
|
mpjao3dan |
|- ( A e. RR -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |