| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atanre |  |-  ( A e. RR -> A e. dom arctan ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. RR /\ A < 0 ) -> A e. dom arctan ) | 
						
							| 3 |  | atanneg |  |-  ( A e. dom arctan -> ( arctan ` -u A ) = -u ( arctan ` A ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( A e. RR /\ A < 0 ) -> ( arctan ` -u A ) = -u ( arctan ` A ) ) | 
						
							| 5 |  | renegcl |  |-  ( A e. RR -> -u A e. RR ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A e. RR /\ A < 0 ) -> -u A e. RR ) | 
						
							| 7 |  | lt0neg1 |  |-  ( A e. RR -> ( A < 0 <-> 0 < -u A ) ) | 
						
							| 8 | 7 | biimpa |  |-  ( ( A e. RR /\ A < 0 ) -> 0 < -u A ) | 
						
							| 9 | 6 8 | elrpd |  |-  ( ( A e. RR /\ A < 0 ) -> -u A e. RR+ ) | 
						
							| 10 |  | atanbndlem |  |-  ( -u A e. RR+ -> ( arctan ` -u A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( A e. RR /\ A < 0 ) -> ( arctan ` -u A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 12 | 4 11 | eqeltrrd |  |-  ( ( A e. RR /\ A < 0 ) -> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 13 |  | halfpire |  |-  ( _pi / 2 ) e. RR | 
						
							| 14 | 13 | recni |  |-  ( _pi / 2 ) e. CC | 
						
							| 15 | 14 | negnegi |  |-  -u -u ( _pi / 2 ) = ( _pi / 2 ) | 
						
							| 16 | 15 | oveq2i |  |-  ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) = ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) | 
						
							| 17 | 12 16 | eleqtrrdi |  |-  ( ( A e. RR /\ A < 0 ) -> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) | 
						
							| 18 |  | neghalfpire |  |-  -u ( _pi / 2 ) e. RR | 
						
							| 19 |  | atanrecl |  |-  ( A e. RR -> ( arctan ` A ) e. RR ) | 
						
							| 20 | 19 | adantr |  |-  ( ( A e. RR /\ A < 0 ) -> ( arctan ` A ) e. RR ) | 
						
							| 21 |  | iooneg |  |-  ( ( -u ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR /\ ( arctan ` A ) e. RR ) -> ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) ) | 
						
							| 22 | 18 13 20 21 | mp3an12i |  |-  ( ( A e. RR /\ A < 0 ) -> ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) ) | 
						
							| 23 | 17 22 | mpbird |  |-  ( ( A e. RR /\ A < 0 ) -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 24 |  | simpr |  |-  ( ( A e. RR /\ A = 0 ) -> A = 0 ) | 
						
							| 25 | 24 | fveq2d |  |-  ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) = ( arctan ` 0 ) ) | 
						
							| 26 |  | atan0 |  |-  ( arctan ` 0 ) = 0 | 
						
							| 27 | 25 26 | eqtrdi |  |-  ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) = 0 ) | 
						
							| 28 |  | 0re |  |-  0 e. RR | 
						
							| 29 |  | pirp |  |-  _pi e. RR+ | 
						
							| 30 |  | rphalfcl |  |-  ( _pi e. RR+ -> ( _pi / 2 ) e. RR+ ) | 
						
							| 31 |  | rpgt0 |  |-  ( ( _pi / 2 ) e. RR+ -> 0 < ( _pi / 2 ) ) | 
						
							| 32 | 29 30 31 | mp2b |  |-  0 < ( _pi / 2 ) | 
						
							| 33 |  | lt0neg2 |  |-  ( ( _pi / 2 ) e. RR -> ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) ) | 
						
							| 34 | 13 33 | ax-mp |  |-  ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) | 
						
							| 35 | 32 34 | mpbi |  |-  -u ( _pi / 2 ) < 0 | 
						
							| 36 | 18 | rexri |  |-  -u ( _pi / 2 ) e. RR* | 
						
							| 37 | 13 | rexri |  |-  ( _pi / 2 ) e. RR* | 
						
							| 38 |  | elioo2 |  |-  ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( 0 e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( 0 e. RR /\ -u ( _pi / 2 ) < 0 /\ 0 < ( _pi / 2 ) ) ) ) | 
						
							| 39 | 36 37 38 | mp2an |  |-  ( 0 e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( 0 e. RR /\ -u ( _pi / 2 ) < 0 /\ 0 < ( _pi / 2 ) ) ) | 
						
							| 40 | 28 35 32 39 | mpbir3an |  |-  0 e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) | 
						
							| 41 | 27 40 | eqeltrdi |  |-  ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 42 |  | elrp |  |-  ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) | 
						
							| 43 |  | atanbndlem |  |-  ( A e. RR+ -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 44 | 42 43 | sylbir |  |-  ( ( A e. RR /\ 0 < A ) -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 45 |  | lttri4 |  |-  ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) | 
						
							| 46 | 28 45 | mpan2 |  |-  ( A e. RR -> ( A < 0 \/ A = 0 \/ 0 < A ) ) | 
						
							| 47 | 23 41 44 46 | mpjao3dan |  |-  ( A e. RR -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |