| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 2 |  | atanrecl |  |-  ( A e. RR -> ( arctan ` A ) e. RR ) | 
						
							| 3 | 1 2 | syl |  |-  ( A e. RR+ -> ( arctan ` A ) e. RR ) | 
						
							| 4 |  | picn |  |-  _pi e. CC | 
						
							| 5 |  | 2cn |  |-  2 e. CC | 
						
							| 6 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 7 |  | divneg |  |-  ( ( _pi e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _pi / 2 ) = ( -u _pi / 2 ) ) | 
						
							| 8 | 4 5 6 7 | mp3an |  |-  -u ( _pi / 2 ) = ( -u _pi / 2 ) | 
						
							| 9 |  | ax-1cn |  |-  1 e. CC | 
						
							| 10 |  | ax-icn |  |-  _i e. CC | 
						
							| 11 | 1 | recnd |  |-  ( A e. RR+ -> A e. CC ) | 
						
							| 12 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 13 | 10 11 12 | sylancr |  |-  ( A e. RR+ -> ( _i x. A ) e. CC ) | 
						
							| 14 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 15 | 9 13 14 | sylancr |  |-  ( A e. RR+ -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 16 |  | atanre |  |-  ( A e. RR -> A e. dom arctan ) | 
						
							| 17 | 1 16 | syl |  |-  ( A e. RR+ -> A e. dom arctan ) | 
						
							| 18 |  | atandm2 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) | 
						
							| 19 | 17 18 | sylib |  |-  ( A e. RR+ -> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) | 
						
							| 20 | 19 | simp3d |  |-  ( A e. RR+ -> ( 1 + ( _i x. A ) ) =/= 0 ) | 
						
							| 21 | 15 20 | logcld |  |-  ( A e. RR+ -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) | 
						
							| 22 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 23 | 9 13 22 | sylancr |  |-  ( A e. RR+ -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 24 | 19 | simp2d |  |-  ( A e. RR+ -> ( 1 - ( _i x. A ) ) =/= 0 ) | 
						
							| 25 | 23 24 | logcld |  |-  ( A e. RR+ -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) | 
						
							| 26 | 21 25 | subcld |  |-  ( A e. RR+ -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) | 
						
							| 27 |  | imre |  |-  ( ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Re ` ( -u _i x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( A e. RR+ -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Re ` ( -u _i x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) | 
						
							| 29 |  | atanval |  |-  ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 30 | 17 29 | syl |  |-  ( A e. RR+ -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) = ( 2 x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 32 | 10 5 6 | divcan2i |  |-  ( 2 x. ( _i / 2 ) ) = _i | 
						
							| 33 | 32 | oveq1i |  |-  ( ( 2 x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( _i x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 34 |  | 2re |  |-  2 e. RR | 
						
							| 35 | 34 | a1i |  |-  ( A e. RR+ -> 2 e. RR ) | 
						
							| 36 | 35 | recnd |  |-  ( A e. RR+ -> 2 e. CC ) | 
						
							| 37 |  | halfcl |  |-  ( _i e. CC -> ( _i / 2 ) e. CC ) | 
						
							| 38 | 10 37 | mp1i |  |-  ( A e. RR+ -> ( _i / 2 ) e. CC ) | 
						
							| 39 | 25 21 | subcld |  |-  ( A e. RR+ -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) | 
						
							| 40 | 36 38 39 | mulassd |  |-  ( A e. RR+ -> ( ( 2 x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( 2 x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 41 | 33 40 | eqtr3id |  |-  ( A e. RR+ -> ( _i x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( 2 x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 42 | 31 41 | eqtr4d |  |-  ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) = ( _i x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 43 | 21 25 | negsubdi2d |  |-  ( A e. RR+ -> -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( A e. RR+ -> ( _i x. -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( _i x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 45 | 42 44 | eqtr4d |  |-  ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) = ( _i x. -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 46 |  | mulneg12 |  |-  ( ( _i e. CC /\ ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) -> ( -u _i x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( _i x. -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 47 | 10 26 46 | sylancr |  |-  ( A e. RR+ -> ( -u _i x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( _i x. -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 48 | 45 47 | eqtr4d |  |-  ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) = ( -u _i x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 49 | 48 | fveq2d |  |-  ( A e. RR+ -> ( Re ` ( 2 x. ( arctan ` A ) ) ) = ( Re ` ( -u _i x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) | 
						
							| 50 |  | remulcl |  |-  ( ( 2 e. RR /\ ( arctan ` A ) e. RR ) -> ( 2 x. ( arctan ` A ) ) e. RR ) | 
						
							| 51 | 34 3 50 | sylancr |  |-  ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) e. RR ) | 
						
							| 52 | 51 | rered |  |-  ( A e. RR+ -> ( Re ` ( 2 x. ( arctan ` A ) ) ) = ( 2 x. ( arctan ` A ) ) ) | 
						
							| 53 | 28 49 52 | 3eqtr2rd |  |-  ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) = ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 54 |  | rpgt0 |  |-  ( A e. RR+ -> 0 < A ) | 
						
							| 55 | 1 | rered |  |-  ( A e. RR+ -> ( Re ` A ) = A ) | 
						
							| 56 | 54 55 | breqtrrd |  |-  ( A e. RR+ -> 0 < ( Re ` A ) ) | 
						
							| 57 |  | atanlogsublem |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) | 
						
							| 58 | 17 56 57 | syl2anc |  |-  ( A e. RR+ -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) | 
						
							| 59 | 53 58 | eqeltrd |  |-  ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) e. ( -u _pi (,) _pi ) ) | 
						
							| 60 |  | eliooord |  |-  ( ( 2 x. ( arctan ` A ) ) e. ( -u _pi (,) _pi ) -> ( -u _pi < ( 2 x. ( arctan ` A ) ) /\ ( 2 x. ( arctan ` A ) ) < _pi ) ) | 
						
							| 61 | 59 60 | syl |  |-  ( A e. RR+ -> ( -u _pi < ( 2 x. ( arctan ` A ) ) /\ ( 2 x. ( arctan ` A ) ) < _pi ) ) | 
						
							| 62 | 61 | simpld |  |-  ( A e. RR+ -> -u _pi < ( 2 x. ( arctan ` A ) ) ) | 
						
							| 63 |  | pire |  |-  _pi e. RR | 
						
							| 64 | 63 | renegcli |  |-  -u _pi e. RR | 
						
							| 65 | 64 | a1i |  |-  ( A e. RR+ -> -u _pi e. RR ) | 
						
							| 66 |  | 2pos |  |-  0 < 2 | 
						
							| 67 | 66 | a1i |  |-  ( A e. RR+ -> 0 < 2 ) | 
						
							| 68 |  | ltdivmul |  |-  ( ( -u _pi e. RR /\ ( arctan ` A ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( -u _pi / 2 ) < ( arctan ` A ) <-> -u _pi < ( 2 x. ( arctan ` A ) ) ) ) | 
						
							| 69 | 65 3 35 67 68 | syl112anc |  |-  ( A e. RR+ -> ( ( -u _pi / 2 ) < ( arctan ` A ) <-> -u _pi < ( 2 x. ( arctan ` A ) ) ) ) | 
						
							| 70 | 62 69 | mpbird |  |-  ( A e. RR+ -> ( -u _pi / 2 ) < ( arctan ` A ) ) | 
						
							| 71 | 8 70 | eqbrtrid |  |-  ( A e. RR+ -> -u ( _pi / 2 ) < ( arctan ` A ) ) | 
						
							| 72 | 61 | simprd |  |-  ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) < _pi ) | 
						
							| 73 | 63 | a1i |  |-  ( A e. RR+ -> _pi e. RR ) | 
						
							| 74 |  | ltmuldiv2 |  |-  ( ( ( arctan ` A ) e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. ( arctan ` A ) ) < _pi <-> ( arctan ` A ) < ( _pi / 2 ) ) ) | 
						
							| 75 | 3 73 35 67 74 | syl112anc |  |-  ( A e. RR+ -> ( ( 2 x. ( arctan ` A ) ) < _pi <-> ( arctan ` A ) < ( _pi / 2 ) ) ) | 
						
							| 76 | 72 75 | mpbid |  |-  ( A e. RR+ -> ( arctan ` A ) < ( _pi / 2 ) ) | 
						
							| 77 |  | halfpire |  |-  ( _pi / 2 ) e. RR | 
						
							| 78 | 77 | renegcli |  |-  -u ( _pi / 2 ) e. RR | 
						
							| 79 | 78 | rexri |  |-  -u ( _pi / 2 ) e. RR* | 
						
							| 80 | 77 | rexri |  |-  ( _pi / 2 ) e. RR* | 
						
							| 81 |  | elioo2 |  |-  ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( arctan ` A ) e. RR /\ -u ( _pi / 2 ) < ( arctan ` A ) /\ ( arctan ` A ) < ( _pi / 2 ) ) ) ) | 
						
							| 82 | 79 80 81 | mp2an |  |-  ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( arctan ` A ) e. RR /\ -u ( _pi / 2 ) < ( arctan ` A ) /\ ( arctan ` A ) < ( _pi / 2 ) ) ) | 
						
							| 83 | 3 71 76 82 | syl3anbrc |  |-  ( A e. RR+ -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |