| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atanre |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ dom arctan ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 𝐴 ∈ dom arctan ) |
| 3 |
|
atanneg |
⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ - 𝐴 ) = - ( arctan ‘ 𝐴 ) ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ - 𝐴 ) = - ( arctan ‘ 𝐴 ) ) |
| 5 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ ) |
| 7 |
|
lt0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
| 8 |
7
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 < - 𝐴 ) |
| 9 |
6 8
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ+ ) |
| 10 |
|
atanbndlem |
⊢ ( - 𝐴 ∈ ℝ+ → ( arctan ‘ - 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ - 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 12 |
4 11
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 13 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
| 14 |
13
|
recni |
⊢ ( π / 2 ) ∈ ℂ |
| 15 |
14
|
negnegi |
⊢ - - ( π / 2 ) = ( π / 2 ) |
| 16 |
15
|
oveq2i |
⊢ ( - ( π / 2 ) (,) - - ( π / 2 ) ) = ( - ( π / 2 ) (,) ( π / 2 ) ) |
| 17 |
12 16
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) - - ( π / 2 ) ) ) |
| 18 |
|
neghalfpire |
⊢ - ( π / 2 ) ∈ ℝ |
| 19 |
|
atanrecl |
⊢ ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ℝ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ 𝐴 ) ∈ ℝ ) |
| 21 |
|
iooneg |
⊢ ( ( - ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ ( arctan ‘ 𝐴 ) ∈ ℝ ) → ( ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) - - ( π / 2 ) ) ) ) |
| 22 |
18 13 20 21
|
mp3an12i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) - - ( π / 2 ) ) ) ) |
| 23 |
17 22
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
| 25 |
24
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) = ( arctan ‘ 0 ) ) |
| 26 |
|
atan0 |
⊢ ( arctan ‘ 0 ) = 0 |
| 27 |
25 26
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) = 0 ) |
| 28 |
|
0re |
⊢ 0 ∈ ℝ |
| 29 |
|
pirp |
⊢ π ∈ ℝ+ |
| 30 |
|
rphalfcl |
⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) |
| 31 |
|
rpgt0 |
⊢ ( ( π / 2 ) ∈ ℝ+ → 0 < ( π / 2 ) ) |
| 32 |
29 30 31
|
mp2b |
⊢ 0 < ( π / 2 ) |
| 33 |
|
lt0neg2 |
⊢ ( ( π / 2 ) ∈ ℝ → ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) ) |
| 34 |
13 33
|
ax-mp |
⊢ ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) |
| 35 |
32 34
|
mpbi |
⊢ - ( π / 2 ) < 0 |
| 36 |
18
|
rexri |
⊢ - ( π / 2 ) ∈ ℝ* |
| 37 |
13
|
rexri |
⊢ ( π / 2 ) ∈ ℝ* |
| 38 |
|
elioo2 |
⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( 0 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( 0 ∈ ℝ ∧ - ( π / 2 ) < 0 ∧ 0 < ( π / 2 ) ) ) ) |
| 39 |
36 37 38
|
mp2an |
⊢ ( 0 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( 0 ∈ ℝ ∧ - ( π / 2 ) < 0 ∧ 0 < ( π / 2 ) ) ) |
| 40 |
28 35 32 39
|
mpbir3an |
⊢ 0 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) |
| 41 |
27 40
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 42 |
|
elrp |
⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 43 |
|
atanbndlem |
⊢ ( 𝐴 ∈ ℝ+ → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 44 |
42 43
|
sylbir |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 45 |
|
lttri4 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) |
| 46 |
28 45
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) |
| 47 |
23 41 44 46
|
mpjao3dan |
⊢ ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |