| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atanre | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  dom  arctan ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  𝐴  ∈  dom  arctan ) | 
						
							| 3 |  | atanneg | ⊢ ( 𝐴  ∈  dom  arctan  →  ( arctan ‘ - 𝐴 )  =  - ( arctan ‘ 𝐴 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  ( arctan ‘ - 𝐴 )  =  - ( arctan ‘ 𝐴 ) ) | 
						
							| 5 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  - 𝐴  ∈  ℝ ) | 
						
							| 7 |  | lt0neg1 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  <  0  ↔  0  <  - 𝐴 ) ) | 
						
							| 8 | 7 | biimpa | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  0  <  - 𝐴 ) | 
						
							| 9 | 6 8 | elrpd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  - 𝐴  ∈  ℝ+ ) | 
						
							| 10 |  | atanbndlem | ⊢ ( - 𝐴  ∈  ℝ+  →  ( arctan ‘ - 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  ( arctan ‘ - 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 12 | 4 11 | eqeltrrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  - ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 13 |  | halfpire | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 14 | 13 | recni | ⊢ ( π  /  2 )  ∈  ℂ | 
						
							| 15 | 14 | negnegi | ⊢ - - ( π  /  2 )  =  ( π  /  2 ) | 
						
							| 16 | 15 | oveq2i | ⊢ ( - ( π  /  2 ) (,) - - ( π  /  2 ) )  =  ( - ( π  /  2 ) (,) ( π  /  2 ) ) | 
						
							| 17 | 12 16 | eleqtrrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  - ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) - - ( π  /  2 ) ) ) | 
						
							| 18 |  | neghalfpire | ⊢ - ( π  /  2 )  ∈  ℝ | 
						
							| 19 |  | atanrecl | ⊢ ( 𝐴  ∈  ℝ  →  ( arctan ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  ( arctan ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 21 |  | iooneg | ⊢ ( ( - ( π  /  2 )  ∈  ℝ  ∧  ( π  /  2 )  ∈  ℝ  ∧  ( arctan ‘ 𝐴 )  ∈  ℝ )  →  ( ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ↔  - ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) - - ( π  /  2 ) ) ) ) | 
						
							| 22 | 18 13 20 21 | mp3an12i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  ( ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ↔  - ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) - - ( π  /  2 ) ) ) ) | 
						
							| 23 | 17 22 | mpbird | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  𝐴  =  0 ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  ( arctan ‘ 𝐴 )  =  ( arctan ‘ 0 ) ) | 
						
							| 26 |  | atan0 | ⊢ ( arctan ‘ 0 )  =  0 | 
						
							| 27 | 25 26 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  ( arctan ‘ 𝐴 )  =  0 ) | 
						
							| 28 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 29 |  | pirp | ⊢ π  ∈  ℝ+ | 
						
							| 30 |  | rphalfcl | ⊢ ( π  ∈  ℝ+  →  ( π  /  2 )  ∈  ℝ+ ) | 
						
							| 31 |  | rpgt0 | ⊢ ( ( π  /  2 )  ∈  ℝ+  →  0  <  ( π  /  2 ) ) | 
						
							| 32 | 29 30 31 | mp2b | ⊢ 0  <  ( π  /  2 ) | 
						
							| 33 |  | lt0neg2 | ⊢ ( ( π  /  2 )  ∈  ℝ  →  ( 0  <  ( π  /  2 )  ↔  - ( π  /  2 )  <  0 ) ) | 
						
							| 34 | 13 33 | ax-mp | ⊢ ( 0  <  ( π  /  2 )  ↔  - ( π  /  2 )  <  0 ) | 
						
							| 35 | 32 34 | mpbi | ⊢ - ( π  /  2 )  <  0 | 
						
							| 36 | 18 | rexri | ⊢ - ( π  /  2 )  ∈  ℝ* | 
						
							| 37 | 13 | rexri | ⊢ ( π  /  2 )  ∈  ℝ* | 
						
							| 38 |  | elioo2 | ⊢ ( ( - ( π  /  2 )  ∈  ℝ*  ∧  ( π  /  2 )  ∈  ℝ* )  →  ( 0  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ↔  ( 0  ∈  ℝ  ∧  - ( π  /  2 )  <  0  ∧  0  <  ( π  /  2 ) ) ) ) | 
						
							| 39 | 36 37 38 | mp2an | ⊢ ( 0  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ↔  ( 0  ∈  ℝ  ∧  - ( π  /  2 )  <  0  ∧  0  <  ( π  /  2 ) ) ) | 
						
							| 40 | 28 35 32 39 | mpbir3an | ⊢ 0  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) | 
						
							| 41 | 27 40 | eqeltrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 42 |  | elrp | ⊢ ( 𝐴  ∈  ℝ+  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 43 |  | atanbndlem | ⊢ ( 𝐴  ∈  ℝ+  →  ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 44 | 42 43 | sylbir | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 45 |  | lttri4 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( 𝐴  <  0  ∨  𝐴  =  0  ∨  0  <  𝐴 ) ) | 
						
							| 46 | 28 45 | mpan2 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  <  0  ∨  𝐴  =  0  ∨  0  <  𝐴 ) ) | 
						
							| 47 | 23 41 44 46 | mpjao3dan | ⊢ ( 𝐴  ∈  ℝ  →  ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) |