Step |
Hyp |
Ref |
Expression |
1 |
|
atanre |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ dom arctan ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 𝐴 ∈ dom arctan ) |
3 |
|
atanneg |
⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ - 𝐴 ) = - ( arctan ‘ 𝐴 ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ - 𝐴 ) = - ( arctan ‘ 𝐴 ) ) |
5 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ ) |
7 |
|
lt0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
8 |
7
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 < - 𝐴 ) |
9 |
6 8
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ+ ) |
10 |
|
atanbndlem |
⊢ ( - 𝐴 ∈ ℝ+ → ( arctan ‘ - 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ - 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
12 |
4 11
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
13 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
14 |
13
|
recni |
⊢ ( π / 2 ) ∈ ℂ |
15 |
14
|
negnegi |
⊢ - - ( π / 2 ) = ( π / 2 ) |
16 |
15
|
oveq2i |
⊢ ( - ( π / 2 ) (,) - - ( π / 2 ) ) = ( - ( π / 2 ) (,) ( π / 2 ) ) |
17 |
12 16
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) - - ( π / 2 ) ) ) |
18 |
|
neghalfpire |
⊢ - ( π / 2 ) ∈ ℝ |
19 |
|
atanrecl |
⊢ ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ℝ ) |
20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ 𝐴 ) ∈ ℝ ) |
21 |
|
iooneg |
⊢ ( ( - ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ ( arctan ‘ 𝐴 ) ∈ ℝ ) → ( ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) - - ( π / 2 ) ) ) ) |
22 |
18 13 20 21
|
mp3an12i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) - - ( π / 2 ) ) ) ) |
23 |
17 22
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
24 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
25 |
24
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) = ( arctan ‘ 0 ) ) |
26 |
|
atan0 |
⊢ ( arctan ‘ 0 ) = 0 |
27 |
25 26
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) = 0 ) |
28 |
|
0re |
⊢ 0 ∈ ℝ |
29 |
|
pirp |
⊢ π ∈ ℝ+ |
30 |
|
rphalfcl |
⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) |
31 |
|
rpgt0 |
⊢ ( ( π / 2 ) ∈ ℝ+ → 0 < ( π / 2 ) ) |
32 |
29 30 31
|
mp2b |
⊢ 0 < ( π / 2 ) |
33 |
|
lt0neg2 |
⊢ ( ( π / 2 ) ∈ ℝ → ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) ) |
34 |
13 33
|
ax-mp |
⊢ ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) |
35 |
32 34
|
mpbi |
⊢ - ( π / 2 ) < 0 |
36 |
18
|
rexri |
⊢ - ( π / 2 ) ∈ ℝ* |
37 |
13
|
rexri |
⊢ ( π / 2 ) ∈ ℝ* |
38 |
|
elioo2 |
⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( 0 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( 0 ∈ ℝ ∧ - ( π / 2 ) < 0 ∧ 0 < ( π / 2 ) ) ) ) |
39 |
36 37 38
|
mp2an |
⊢ ( 0 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( 0 ∈ ℝ ∧ - ( π / 2 ) < 0 ∧ 0 < ( π / 2 ) ) ) |
40 |
28 35 32 39
|
mpbir3an |
⊢ 0 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) |
41 |
27 40
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
42 |
|
elrp |
⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
43 |
|
atanbndlem |
⊢ ( 𝐴 ∈ ℝ+ → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
44 |
42 43
|
sylbir |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
45 |
|
lttri4 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) |
46 |
28 45
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) |
47 |
23 41 44 46
|
mpjao3dan |
⊢ ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |