Metamath Proof Explorer


Theorem atanbnd

Description: The arctangent function is bounded by _pi / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015)

Ref Expression
Assertion atanbnd ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) )

Proof

Step Hyp Ref Expression
1 atanre ( 𝐴 ∈ ℝ → 𝐴 ∈ dom arctan )
2 1 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 𝐴 ∈ dom arctan )
3 atanneg ( 𝐴 ∈ dom arctan → ( arctan ‘ - 𝐴 ) = - ( arctan ‘ 𝐴 ) )
4 2 3 syl ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ - 𝐴 ) = - ( arctan ‘ 𝐴 ) )
5 renegcl ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )
6 5 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ )
7 lt0neg1 ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) )
8 7 biimpa ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 < - 𝐴 )
9 6 8 elrpd ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ+ )
10 atanbndlem ( - 𝐴 ∈ ℝ+ → ( arctan ‘ - 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) )
11 9 10 syl ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ - 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) )
12 4 11 eqeltrrd ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) )
13 halfpire ( π / 2 ) ∈ ℝ
14 13 recni ( π / 2 ) ∈ ℂ
15 14 negnegi - - ( π / 2 ) = ( π / 2 )
16 15 oveq2i ( - ( π / 2 ) (,) - - ( π / 2 ) ) = ( - ( π / 2 ) (,) ( π / 2 ) )
17 12 16 eleqtrrdi ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) - - ( π / 2 ) ) )
18 neghalfpire - ( π / 2 ) ∈ ℝ
19 atanrecl ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ℝ )
20 19 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ 𝐴 ) ∈ ℝ )
21 iooneg ( ( - ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ ( arctan ‘ 𝐴 ) ∈ ℝ ) → ( ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) - - ( π / 2 ) ) ) )
22 18 13 20 21 mp3an12i ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) - - ( π / 2 ) ) ) )
23 17 22 mpbird ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) )
24 simpr ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → 𝐴 = 0 )
25 24 fveq2d ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) = ( arctan ‘ 0 ) )
26 atan0 ( arctan ‘ 0 ) = 0
27 25 26 eqtrdi ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) = 0 )
28 0re 0 ∈ ℝ
29 pirp π ∈ ℝ+
30 rphalfcl ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ )
31 rpgt0 ( ( π / 2 ) ∈ ℝ+ → 0 < ( π / 2 ) )
32 29 30 31 mp2b 0 < ( π / 2 )
33 lt0neg2 ( ( π / 2 ) ∈ ℝ → ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) )
34 13 33 ax-mp ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 )
35 32 34 mpbi - ( π / 2 ) < 0
36 18 rexri - ( π / 2 ) ∈ ℝ*
37 13 rexri ( π / 2 ) ∈ ℝ*
38 elioo2 ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( 0 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( 0 ∈ ℝ ∧ - ( π / 2 ) < 0 ∧ 0 < ( π / 2 ) ) ) )
39 36 37 38 mp2an ( 0 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( 0 ∈ ℝ ∧ - ( π / 2 ) < 0 ∧ 0 < ( π / 2 ) ) )
40 28 35 32 39 mpbir3an 0 ∈ ( - ( π / 2 ) (,) ( π / 2 ) )
41 27 40 eqeltrdi ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) )
42 elrp ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
43 atanbndlem ( 𝐴 ∈ ℝ+ → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) )
44 42 43 sylbir ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) )
45 lttri4 ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) )
46 28 45 mpan2 ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) )
47 23 41 44 46 mpjao3dan ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) )