| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atanbnd | ⊢ ( 𝐴  ∈  ℝ  →  ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 2 |  | atanbnd | ⊢ ( 𝐵  ∈  ℝ  →  ( arctan ‘ 𝐵 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 3 |  | tanord | ⊢ ( ( ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  ( arctan ‘ 𝐵 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  →  ( ( arctan ‘ 𝐴 )  <  ( arctan ‘ 𝐵 )  ↔  ( tan ‘ ( arctan ‘ 𝐴 ) )  <  ( tan ‘ ( arctan ‘ 𝐵 ) ) ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( arctan ‘ 𝐴 )  <  ( arctan ‘ 𝐵 )  ↔  ( tan ‘ ( arctan ‘ 𝐴 ) )  <  ( tan ‘ ( arctan ‘ 𝐵 ) ) ) ) | 
						
							| 5 |  | atanre | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  dom  arctan ) | 
						
							| 6 |  | tanatan | ⊢ ( 𝐴  ∈  dom  arctan  →  ( tan ‘ ( arctan ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( tan ‘ ( arctan ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 8 |  | atanre | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  dom  arctan ) | 
						
							| 9 |  | tanatan | ⊢ ( 𝐵  ∈  dom  arctan  →  ( tan ‘ ( arctan ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐵  ∈  ℝ  →  ( tan ‘ ( arctan ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 11 | 7 10 | breqan12d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( tan ‘ ( arctan ‘ 𝐴 ) )  <  ( tan ‘ ( arctan ‘ 𝐵 ) )  ↔  𝐴  <  𝐵 ) ) | 
						
							| 12 | 4 11 | bitr2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( arctan ‘ 𝐴 )  <  ( arctan ‘ 𝐵 ) ) ) |