Description: Alternate proof of bj-ideqg1 using brabga instead of the "unbounded" version bj-brab2a1 or brab2a . (Contributed by BJ, 25-Dec-2023) (Proof modification is discouraged.) (New usage is discouraged.)
TODO: delete once bj-ideqg is in the main section.
Ref | Expression | ||
---|---|---|---|
Assertion | bj-ideqg1ALT | |- ( ( A e. V \/ B e. W ) -> ( A _I B <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli | |- Rel _I |
|
2 | 1 | brrelex12i | |- ( A _I B -> ( A e. _V /\ B e. _V ) ) |
3 | 2 | adantl | |- ( ( ( A e. V \/ B e. W ) /\ A _I B ) -> ( A e. _V /\ B e. _V ) ) |
4 | elex | |- ( A e. V -> A e. _V ) |
|
5 | 4 | adantr | |- ( ( A e. V /\ A = B ) -> A e. _V ) |
6 | eleq1 | |- ( A = B -> ( A e. W <-> B e. W ) ) |
|
7 | 6 | biimparc | |- ( ( B e. W /\ A = B ) -> A e. W ) |
8 | 7 | elexd | |- ( ( B e. W /\ A = B ) -> A e. _V ) |
9 | 5 8 | jaoian | |- ( ( ( A e. V \/ B e. W ) /\ A = B ) -> A e. _V ) |
10 | eleq1 | |- ( A = B -> ( A e. V <-> B e. V ) ) |
|
11 | 10 | biimpac | |- ( ( A e. V /\ A = B ) -> B e. V ) |
12 | 11 | elexd | |- ( ( A e. V /\ A = B ) -> B e. _V ) |
13 | elex | |- ( B e. W -> B e. _V ) |
|
14 | 13 | adantr | |- ( ( B e. W /\ A = B ) -> B e. _V ) |
15 | 12 14 | jaoian | |- ( ( ( A e. V \/ B e. W ) /\ A = B ) -> B e. _V ) |
16 | 9 15 | jca | |- ( ( ( A e. V \/ B e. W ) /\ A = B ) -> ( A e. _V /\ B e. _V ) ) |
17 | eqeq12 | |- ( ( x = A /\ y = B ) -> ( x = y <-> A = B ) ) |
|
18 | df-id | |- _I = { <. x , y >. | x = y } |
|
19 | 17 18 | brabga | |- ( ( A e. _V /\ B e. _V ) -> ( A _I B <-> A = B ) ) |
20 | 3 16 19 | pm5.21nd | |- ( ( A e. V \/ B e. W ) -> ( A _I B <-> A = B ) ) |