Metamath Proof Explorer


Theorem bj-ideqg1ALT

Description: Alternate proof of bj-ideqg1 using brabga instead of the "unbounded" version bj-brab2a1 or brab2a . (Contributed by BJ, 25-Dec-2023) (Proof modification is discouraged.) (New usage is discouraged.)

TODO: delete once bj-ideqg is in the main section.

Ref Expression
Assertion bj-ideqg1ALT
|- ( ( A e. V \/ B e. W ) -> ( A _I B <-> A = B ) )

Proof

Step Hyp Ref Expression
1 reli
 |-  Rel _I
2 1 brrelex12i
 |-  ( A _I B -> ( A e. _V /\ B e. _V ) )
3 2 adantl
 |-  ( ( ( A e. V \/ B e. W ) /\ A _I B ) -> ( A e. _V /\ B e. _V ) )
4 elex
 |-  ( A e. V -> A e. _V )
5 4 adantr
 |-  ( ( A e. V /\ A = B ) -> A e. _V )
6 eleq1
 |-  ( A = B -> ( A e. W <-> B e. W ) )
7 6 biimparc
 |-  ( ( B e. W /\ A = B ) -> A e. W )
8 7 elexd
 |-  ( ( B e. W /\ A = B ) -> A e. _V )
9 5 8 jaoian
 |-  ( ( ( A e. V \/ B e. W ) /\ A = B ) -> A e. _V )
10 eleq1
 |-  ( A = B -> ( A e. V <-> B e. V ) )
11 10 biimpac
 |-  ( ( A e. V /\ A = B ) -> B e. V )
12 11 elexd
 |-  ( ( A e. V /\ A = B ) -> B e. _V )
13 elex
 |-  ( B e. W -> B e. _V )
14 13 adantr
 |-  ( ( B e. W /\ A = B ) -> B e. _V )
15 12 14 jaoian
 |-  ( ( ( A e. V \/ B e. W ) /\ A = B ) -> B e. _V )
16 9 15 jca
 |-  ( ( ( A e. V \/ B e. W ) /\ A = B ) -> ( A e. _V /\ B e. _V ) )
17 eqeq12
 |-  ( ( x = A /\ y = B ) -> ( x = y <-> A = B ) )
18 df-id
 |-  _I = { <. x , y >. | x = y }
19 17 18 brabga
 |-  ( ( A e. _V /\ B e. _V ) -> ( A _I B <-> A = B ) )
20 3 16 19 pm5.21nd
 |-  ( ( A e. V \/ B e. W ) -> ( A _I B <-> A = B ) )