Description: Alternate proof of bj-ideqg1 using brabga instead of the "unbounded" version bj-brab2a1 or brab2a . (Contributed by BJ, 25-Dec-2023) (Proof modification is discouraged.) (New usage is discouraged.)
TODO: delete once bj-ideqg is in the main section.
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-ideqg1ALT | ⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reli | ⊢ Rel I | |
| 2 | 1 | brrelex12i | ⊢ ( 𝐴 I 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | 
| 3 | 2 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) ∧ 𝐴 I 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | 
| 4 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ V ) | 
| 6 | eleq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊 ) ) | |
| 7 | 6 | biimparc | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝑊 ) | 
| 8 | 7 | elexd | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ V ) | 
| 9 | 5 8 | jaoian | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ V ) | 
| 10 | eleq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉 ) ) | |
| 11 | 10 | biimpac | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝑉 ) | 
| 12 | 11 | elexd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ V ) | 
| 13 | elex | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ V ) | 
| 15 | 12 14 | jaoian | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ V ) | 
| 16 | 9 15 | jca | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | 
| 17 | eqeq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝐵 ) ) | |
| 18 | df-id | ⊢ I = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } | |
| 19 | 17 18 | brabga | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) | 
| 20 | 3 16 19 | pm5.21nd | ⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) |