Metamath Proof Explorer


Theorem bj-ideqg1ALT

Description: Alternate proof of bj-ideqg1 using brabga instead of the "unbounded" version bj-brab2a1 or brab2a . (Contributed by BJ, 25-Dec-2023) (Proof modification is discouraged.) (New usage is discouraged.)

TODO: delete once bj-ideqg is in the main section.

Ref Expression
Assertion bj-ideqg1ALT ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 I 𝐵𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 reli Rel I
2 1 brrelex12i ( 𝐴 I 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
3 2 adantl ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴 I 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
4 elex ( 𝐴𝑉𝐴 ∈ V )
5 4 adantr ( ( 𝐴𝑉𝐴 = 𝐵 ) → 𝐴 ∈ V )
6 eleq1 ( 𝐴 = 𝐵 → ( 𝐴𝑊𝐵𝑊 ) )
7 6 biimparc ( ( 𝐵𝑊𝐴 = 𝐵 ) → 𝐴𝑊 )
8 7 elexd ( ( 𝐵𝑊𝐴 = 𝐵 ) → 𝐴 ∈ V )
9 5 8 jaoian ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ V )
10 eleq1 ( 𝐴 = 𝐵 → ( 𝐴𝑉𝐵𝑉 ) )
11 10 biimpac ( ( 𝐴𝑉𝐴 = 𝐵 ) → 𝐵𝑉 )
12 11 elexd ( ( 𝐴𝑉𝐴 = 𝐵 ) → 𝐵 ∈ V )
13 elex ( 𝐵𝑊𝐵 ∈ V )
14 13 adantr ( ( 𝐵𝑊𝐴 = 𝐵 ) → 𝐵 ∈ V )
15 12 14 jaoian ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ V )
16 9 15 jca ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
17 eqeq12 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝑥 = 𝑦𝐴 = 𝐵 ) )
18 df-id I = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 }
19 17 18 brabga ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 I 𝐵𝐴 = 𝐵 ) )
20 3 16 19 pm5.21nd ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 I 𝐵𝐴 = 𝐵 ) )