Metamath Proof Explorer


Theorem bj-ideqg1ALT

Description: Alternate proof of bj-ideqg1 using brabga instead of the "unbounded" version bj-brab2a1 or brab2a . (Contributed by BJ, 25-Dec-2023) (Proof modification is discouraged.) (New usage is discouraged.)

TODO: delete once bj-ideqg is in the main section.

Ref Expression
Assertion bj-ideqg1ALT A V B W A I B A = B

Proof

Step Hyp Ref Expression
1 reli Rel I
2 1 brrelex12i A I B A V B V
3 2 adantl A V B W A I B A V B V
4 elex A V A V
5 4 adantr A V A = B A V
6 eleq1 A = B A W B W
7 6 biimparc B W A = B A W
8 7 elexd B W A = B A V
9 5 8 jaoian A V B W A = B A V
10 eleq1 A = B A V B V
11 10 biimpac A V A = B B V
12 11 elexd A V A = B B V
13 elex B W B V
14 13 adantr B W A = B B V
15 12 14 jaoian A V B W A = B B V
16 9 15 jca A V B W A = B A V B V
17 eqeq12 x = A y = B x = y A = B
18 df-id I = x y | x = y
19 17 18 brabga A V B V A I B A = B
20 3 16 19 pm5.21nd A V B W A I B A = B