Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
|- Rel ( _I |` C ) |
2 |
1
|
brrelex12i |
|- ( A ( _I |` C ) B -> ( A e. _V /\ B e. _V ) ) |
3 |
|
simpl |
|- ( ( A e. C /\ A = B ) -> A e. C ) |
4 |
3
|
elexd |
|- ( ( A e. C /\ A = B ) -> A e. _V ) |
5 |
|
eleq1 |
|- ( A = B -> ( A e. C <-> B e. C ) ) |
6 |
5
|
biimpac |
|- ( ( A e. C /\ A = B ) -> B e. C ) |
7 |
6
|
elexd |
|- ( ( A e. C /\ A = B ) -> B e. _V ) |
8 |
4 7
|
jca |
|- ( ( A e. C /\ A = B ) -> ( A e. _V /\ B e. _V ) ) |
9 |
|
brres |
|- ( B e. _V -> ( A ( _I |` C ) B <-> ( A e. C /\ A _I B ) ) ) |
10 |
9
|
adantl |
|- ( ( A e. _V /\ B e. _V ) -> ( A ( _I |` C ) B <-> ( A e. C /\ A _I B ) ) ) |
11 |
|
eqeq12 |
|- ( ( x = A /\ y = B ) -> ( x = y <-> A = B ) ) |
12 |
|
df-id |
|- _I = { <. x , y >. | x = y } |
13 |
11 12
|
brabga |
|- ( ( A e. _V /\ B e. _V ) -> ( A _I B <-> A = B ) ) |
14 |
13
|
anbi2d |
|- ( ( A e. _V /\ B e. _V ) -> ( ( A e. C /\ A _I B ) <-> ( A e. C /\ A = B ) ) ) |
15 |
10 14
|
bitrd |
|- ( ( A e. _V /\ B e. _V ) -> ( A ( _I |` C ) B <-> ( A e. C /\ A = B ) ) ) |
16 |
2 8 15
|
pm5.21nii |
|- ( A ( _I |` C ) B <-> ( A e. C /\ A = B ) ) |