| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relres |  |-  Rel ( _I |` C ) | 
						
							| 2 | 1 | brrelex12i |  |-  ( A ( _I |` C ) B -> ( A e. _V /\ B e. _V ) ) | 
						
							| 3 |  | simpl |  |-  ( ( A e. C /\ A = B ) -> A e. C ) | 
						
							| 4 | 3 | elexd |  |-  ( ( A e. C /\ A = B ) -> A e. _V ) | 
						
							| 5 |  | eleq1 |  |-  ( A = B -> ( A e. C <-> B e. C ) ) | 
						
							| 6 | 5 | biimpac |  |-  ( ( A e. C /\ A = B ) -> B e. C ) | 
						
							| 7 | 6 | elexd |  |-  ( ( A e. C /\ A = B ) -> B e. _V ) | 
						
							| 8 | 4 7 | jca |  |-  ( ( A e. C /\ A = B ) -> ( A e. _V /\ B e. _V ) ) | 
						
							| 9 |  | brres |  |-  ( B e. _V -> ( A ( _I |` C ) B <-> ( A e. C /\ A _I B ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. _V /\ B e. _V ) -> ( A ( _I |` C ) B <-> ( A e. C /\ A _I B ) ) ) | 
						
							| 11 |  | eqeq12 |  |-  ( ( x = A /\ y = B ) -> ( x = y <-> A = B ) ) | 
						
							| 12 |  | df-id |  |-  _I = { <. x , y >. | x = y } | 
						
							| 13 | 11 12 | brabga |  |-  ( ( A e. _V /\ B e. _V ) -> ( A _I B <-> A = B ) ) | 
						
							| 14 | 13 | anbi2d |  |-  ( ( A e. _V /\ B e. _V ) -> ( ( A e. C /\ A _I B ) <-> ( A e. C /\ A = B ) ) ) | 
						
							| 15 | 10 14 | bitrd |  |-  ( ( A e. _V /\ B e. _V ) -> ( A ( _I |` C ) B <-> ( A e. C /\ A = B ) ) ) | 
						
							| 16 | 2 8 15 | pm5.21nii |  |-  ( A ( _I |` C ) B <-> ( A e. C /\ A = B ) ) |