Metamath Proof Explorer


Theorem bj-idreseqb

Description: Characterization for two classes to be related under the restricted identity relation. (Contributed by BJ, 24-Dec-2023)

Ref Expression
Assertion bj-idreseqb A I C B A C A = B

Proof

Step Hyp Ref Expression
1 relres Rel I C
2 1 brrelex12i A I C B A V B V
3 simpl A C A = B A C
4 3 elexd A C A = B A V
5 eleq1 A = B A C B C
6 5 biimpac A C A = B B C
7 6 elexd A C A = B B V
8 4 7 jca A C A = B A V B V
9 brres B V A I C B A C A I B
10 9 adantl A V B V A I C B A C A I B
11 eqeq12 x = A y = B x = y A = B
12 df-id I = x y | x = y
13 11 12 brabga A V B V A I B A = B
14 13 anbi2d A V B V A C A I B A C A = B
15 10 14 bitrd A V B V A I C B A C A = B
16 2 8 15 pm5.21nii A I C B A C A = B