| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relres | ⊢ Rel  (  I   ↾  𝐶 ) | 
						
							| 2 | 1 | brrelex12i | ⊢ ( 𝐴 (  I   ↾  𝐶 ) 𝐵  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  𝐴  ∈  𝐶 ) | 
						
							| 4 | 3 | elexd | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  𝐴  ∈  V ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ∈  𝐶  ↔  𝐵  ∈  𝐶 ) ) | 
						
							| 6 | 5 | biimpac | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  𝐵  ∈  𝐶 ) | 
						
							| 7 | 6 | elexd | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 8 | 4 7 | jca | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 9 |  | brres | ⊢ ( 𝐵  ∈  V  →  ( 𝐴 (  I   ↾  𝐶 ) 𝐵  ↔  ( 𝐴  ∈  𝐶  ∧  𝐴  I  𝐵 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐴 (  I   ↾  𝐶 ) 𝐵  ↔  ( 𝐴  ∈  𝐶  ∧  𝐴  I  𝐵 ) ) ) | 
						
							| 11 |  | eqeq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑥  =  𝑦  ↔  𝐴  =  𝐵 ) ) | 
						
							| 12 |  | df-id | ⊢  I   =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  =  𝑦 } | 
						
							| 13 | 11 12 | brabga | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐴  I  𝐵  ↔  𝐴  =  𝐵 ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( ( 𝐴  ∈  𝐶  ∧  𝐴  I  𝐵 )  ↔  ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 ) ) ) | 
						
							| 15 | 10 14 | bitrd | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐴 (  I   ↾  𝐶 ) 𝐵  ↔  ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 ) ) ) | 
						
							| 16 | 2 8 15 | pm5.21nii | ⊢ ( 𝐴 (  I   ↾  𝐶 ) 𝐵  ↔  ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 ) ) |