Metamath Proof Explorer


Theorem bj-idreseqb

Description: Characterization for two classes to be related under the restricted identity relation. (Contributed by BJ, 24-Dec-2023)

Ref Expression
Assertion bj-idreseqb ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴𝐶𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 relres Rel ( I ↾ 𝐶 )
2 1 brrelex12i ( 𝐴 ( I ↾ 𝐶 ) 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
3 simpl ( ( 𝐴𝐶𝐴 = 𝐵 ) → 𝐴𝐶 )
4 3 elexd ( ( 𝐴𝐶𝐴 = 𝐵 ) → 𝐴 ∈ V )
5 eleq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶𝐵𝐶 ) )
6 5 biimpac ( ( 𝐴𝐶𝐴 = 𝐵 ) → 𝐵𝐶 )
7 6 elexd ( ( 𝐴𝐶𝐴 = 𝐵 ) → 𝐵 ∈ V )
8 4 7 jca ( ( 𝐴𝐶𝐴 = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
9 brres ( 𝐵 ∈ V → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴𝐶𝐴 I 𝐵 ) ) )
10 9 adantl ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴𝐶𝐴 I 𝐵 ) ) )
11 eqeq12 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝑥 = 𝑦𝐴 = 𝐵 ) )
12 df-id I = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 }
13 11 12 brabga ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 I 𝐵𝐴 = 𝐵 ) )
14 13 anbi2d ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 𝐴𝐶𝐴 I 𝐵 ) ↔ ( 𝐴𝐶𝐴 = 𝐵 ) ) )
15 10 14 bitrd ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴𝐶𝐴 = 𝐵 ) ) )
16 2 8 15 pm5.21nii ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴𝐶𝐴 = 𝐵 ) )