Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
⊢ Rel ( I ↾ 𝐶 ) |
2 |
1
|
brrelex12i |
⊢ ( 𝐴 ( I ↾ 𝐶 ) 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝐶 ) |
4 |
3
|
elexd |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ V ) |
5 |
|
eleq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
6 |
5
|
biimpac |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝐶 ) |
7 |
6
|
elexd |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ V ) |
8 |
4 7
|
jca |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
9 |
|
brres |
⊢ ( 𝐵 ∈ V → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵 ) ) ) |
11 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝐵 ) ) |
12 |
|
df-id |
⊢ I = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } |
13 |
11 12
|
brabga |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) |
14 |
13
|
anbi2d |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) ) ) |
15 |
10 14
|
bitrd |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) ) ) |
16 |
2 8 15
|
pm5.21nii |
⊢ ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) ) |