Description: For sets, the identity relation is the same thing as equality. (Contributed by NM, 30-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalize to a disjunctive antecedent. (Revised by BJ, 24-Dec-2023)
TODO: delete once bj-ideqg is in the main section.
Ref | Expression | ||
---|---|---|---|
Assertion | bj-ideqg1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝐵 ) ) | |
2 | df-id | ⊢ I = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } | |
3 | 1 2 | bj-brab2a1 | ⊢ ( 𝐴 I 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴 = 𝐵 ) ) |
4 | simpr | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) | |
5 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
6 | 5 | a1d | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = 𝐵 → 𝐴 ∈ V ) ) |
7 | elex | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) | |
8 | eleq1a | ⊢ ( 𝐵 ∈ V → ( 𝐴 = 𝐵 → 𝐴 ∈ V ) ) | |
9 | 7 8 | syl | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 = 𝐵 → 𝐴 ∈ V ) ) |
10 | 6 9 | jaoi | ⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ( 𝐴 = 𝐵 → 𝐴 ∈ V ) ) |
11 | eleq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) ) | |
12 | 5 11 | syl5ibcom | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = 𝐵 → 𝐵 ∈ V ) ) |
13 | 7 | a1d | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 = 𝐵 → 𝐵 ∈ V ) ) |
14 | 12 13 | jaoi | ⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ( 𝐴 = 𝐵 → 𝐵 ∈ V ) ) |
15 | 10 14 | jcad | ⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
16 | 15 | ancrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ( 𝐴 = 𝐵 → ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴 = 𝐵 ) ) ) |
17 | 4 16 | impbid2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴 = 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
18 | 3 17 | syl5bb | ⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) |