Metamath Proof Explorer


Theorem bj-ideqg1

Description: For sets, the identity relation is the same thing as equality. (Contributed by NM, 30-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalize to a disjunctive antecedent. (Revised by BJ, 24-Dec-2023)

TODO: delete once bj-ideqg is in the main section.

Ref Expression
Assertion bj-ideqg1 ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 I 𝐵𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eqeq12 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝑥 = 𝑦𝐴 = 𝐵 ) )
2 df-id I = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 }
3 1 2 bj-brab2a1 ( 𝐴 I 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴 = 𝐵 ) )
4 simpr ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 )
5 elex ( 𝐴𝑉𝐴 ∈ V )
6 5 a1d ( 𝐴𝑉 → ( 𝐴 = 𝐵𝐴 ∈ V ) )
7 elex ( 𝐵𝑊𝐵 ∈ V )
8 eleq1a ( 𝐵 ∈ V → ( 𝐴 = 𝐵𝐴 ∈ V ) )
9 7 8 syl ( 𝐵𝑊 → ( 𝐴 = 𝐵𝐴 ∈ V ) )
10 6 9 jaoi ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 = 𝐵𝐴 ∈ V ) )
11 eleq1 ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) )
12 5 11 syl5ibcom ( 𝐴𝑉 → ( 𝐴 = 𝐵𝐵 ∈ V ) )
13 7 a1d ( 𝐵𝑊 → ( 𝐴 = 𝐵𝐵 ∈ V ) )
14 12 13 jaoi ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 = 𝐵𝐵 ∈ V ) )
15 10 14 jcad ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
16 15 ancrd ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 = 𝐵 → ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴 = 𝐵 ) ) )
17 4 16 impbid2 ( ( 𝐴𝑉𝐵𝑊 ) → ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴 = 𝐵 ) ↔ 𝐴 = 𝐵 ) )
18 3 17 syl5bb ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 I 𝐵𝐴 = 𝐵 ) )