Metamath Proof Explorer


Theorem bj-ideqg1

Description: For sets, the identity relation is the same thing as equality. (Contributed by NM, 30-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalize to a disjunctive antecedent. (Revised by BJ, 24-Dec-2023)

TODO: delete once bj-ideqg is in the main section.

Ref Expression
Assertion bj-ideqg1
|- ( ( A e. V \/ B e. W ) -> ( A _I B <-> A = B ) )

Proof

Step Hyp Ref Expression
1 eqeq12
 |-  ( ( x = A /\ y = B ) -> ( x = y <-> A = B ) )
2 df-id
 |-  _I = { <. x , y >. | x = y }
3 1 2 bj-brab2a1
 |-  ( A _I B <-> ( ( A e. _V /\ B e. _V ) /\ A = B ) )
4 simpr
 |-  ( ( ( A e. _V /\ B e. _V ) /\ A = B ) -> A = B )
5 elex
 |-  ( A e. V -> A e. _V )
6 5 a1d
 |-  ( A e. V -> ( A = B -> A e. _V ) )
7 elex
 |-  ( B e. W -> B e. _V )
8 eleq1a
 |-  ( B e. _V -> ( A = B -> A e. _V ) )
9 7 8 syl
 |-  ( B e. W -> ( A = B -> A e. _V ) )
10 6 9 jaoi
 |-  ( ( A e. V \/ B e. W ) -> ( A = B -> A e. _V ) )
11 eleq1
 |-  ( A = B -> ( A e. _V <-> B e. _V ) )
12 5 11 syl5ibcom
 |-  ( A e. V -> ( A = B -> B e. _V ) )
13 7 a1d
 |-  ( B e. W -> ( A = B -> B e. _V ) )
14 12 13 jaoi
 |-  ( ( A e. V \/ B e. W ) -> ( A = B -> B e. _V ) )
15 10 14 jcad
 |-  ( ( A e. V \/ B e. W ) -> ( A = B -> ( A e. _V /\ B e. _V ) ) )
16 15 ancrd
 |-  ( ( A e. V \/ B e. W ) -> ( A = B -> ( ( A e. _V /\ B e. _V ) /\ A = B ) ) )
17 4 16 impbid2
 |-  ( ( A e. V \/ B e. W ) -> ( ( ( A e. _V /\ B e. _V ) /\ A = B ) <-> A = B ) )
18 3 17 syl5bb
 |-  ( ( A e. V \/ B e. W ) -> ( A _I B <-> A = B ) )