Description: For sets, the identity relation is the same thing as equality. (Contributed by NM, 30-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalize to a disjunctive antecedent. (Revised by BJ, 24-Dec-2023)
TODO: delete once bj-ideqg is in the main section.
Ref | Expression | ||
---|---|---|---|
Assertion | bj-ideqg1 | |- ( ( A e. V \/ B e. W ) -> ( A _I B <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12 | |- ( ( x = A /\ y = B ) -> ( x = y <-> A = B ) ) |
|
2 | df-id | |- _I = { <. x , y >. | x = y } |
|
3 | 1 2 | bj-brab2a1 | |- ( A _I B <-> ( ( A e. _V /\ B e. _V ) /\ A = B ) ) |
4 | simpr | |- ( ( ( A e. _V /\ B e. _V ) /\ A = B ) -> A = B ) |
|
5 | elex | |- ( A e. V -> A e. _V ) |
|
6 | 5 | a1d | |- ( A e. V -> ( A = B -> A e. _V ) ) |
7 | elex | |- ( B e. W -> B e. _V ) |
|
8 | eleq1a | |- ( B e. _V -> ( A = B -> A e. _V ) ) |
|
9 | 7 8 | syl | |- ( B e. W -> ( A = B -> A e. _V ) ) |
10 | 6 9 | jaoi | |- ( ( A e. V \/ B e. W ) -> ( A = B -> A e. _V ) ) |
11 | eleq1 | |- ( A = B -> ( A e. _V <-> B e. _V ) ) |
|
12 | 5 11 | syl5ibcom | |- ( A e. V -> ( A = B -> B e. _V ) ) |
13 | 7 | a1d | |- ( B e. W -> ( A = B -> B e. _V ) ) |
14 | 12 13 | jaoi | |- ( ( A e. V \/ B e. W ) -> ( A = B -> B e. _V ) ) |
15 | 10 14 | jcad | |- ( ( A e. V \/ B e. W ) -> ( A = B -> ( A e. _V /\ B e. _V ) ) ) |
16 | 15 | ancrd | |- ( ( A e. V \/ B e. W ) -> ( A = B -> ( ( A e. _V /\ B e. _V ) /\ A = B ) ) ) |
17 | 4 16 | impbid2 | |- ( ( A e. V \/ B e. W ) -> ( ( ( A e. _V /\ B e. _V ) /\ A = B ) <-> A = B ) ) |
18 | 3 17 | syl5bb | |- ( ( A e. V \/ B e. W ) -> ( A _I B <-> A = B ) ) |