| Step | Hyp | Ref | Expression | 
						
							| 1 |  | blssp.2 |  |-  N = ( M |` ( S X. S ) ) | 
						
							| 2 |  | metxmet |  |-  ( M e. ( Met ` X ) -> M e. ( *Met ` X ) ) | 
						
							| 3 | 2 | ad2antrr |  |-  ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> M e. ( *Met ` X ) ) | 
						
							| 4 |  | simprl |  |-  ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> Y e. S ) | 
						
							| 5 |  | simplr |  |-  ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> S C_ X ) | 
						
							| 6 |  | sseqin2 |  |-  ( S C_ X <-> ( X i^i S ) = S ) | 
						
							| 7 | 5 6 | sylib |  |-  ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> ( X i^i S ) = S ) | 
						
							| 8 | 4 7 | eleqtrrd |  |-  ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> Y e. ( X i^i S ) ) | 
						
							| 9 |  | rpxr |  |-  ( R e. RR+ -> R e. RR* ) | 
						
							| 10 | 9 | ad2antll |  |-  ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> R e. RR* ) | 
						
							| 11 | 1 | blres |  |-  ( ( M e. ( *Met ` X ) /\ Y e. ( X i^i S ) /\ R e. RR* ) -> ( Y ( ball ` N ) R ) = ( ( Y ( ball ` M ) R ) i^i S ) ) | 
						
							| 12 | 3 8 10 11 | syl3anc |  |-  ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> ( Y ( ball ` N ) R ) = ( ( Y ( ball ` M ) R ) i^i S ) ) |