| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1121.1 |
|- ( th <-> ( R _FrSe A /\ X e. A ) ) |
| 2 |
|
bnj1121.2 |
|- ( ta <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) ) |
| 3 |
|
bnj1121.3 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
| 4 |
|
bnj1121.4 |
|- ( ze <-> ( i e. n /\ z e. ( f ` i ) ) ) |
| 5 |
|
bnj1121.5 |
|- ( et <-> ( ( f e. K /\ i e. dom f ) -> ( f ` i ) C_ B ) ) |
| 6 |
|
bnj1121.6 |
|- ( ( th /\ ta /\ ch /\ ze ) -> A. i e. n et ) |
| 7 |
|
bnj1121.7 |
|- K = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
| 8 |
|
19.8a |
|- ( ch -> E. n ch ) |
| 9 |
8
|
bnj707 |
|- ( ( th /\ ta /\ ch /\ ze ) -> E. n ch ) |
| 10 |
3 7
|
bnj1083 |
|- ( f e. K <-> E. n ch ) |
| 11 |
9 10
|
sylibr |
|- ( ( th /\ ta /\ ch /\ ze ) -> f e. K ) |
| 12 |
4
|
simplbi |
|- ( ze -> i e. n ) |
| 13 |
12
|
bnj708 |
|- ( ( th /\ ta /\ ch /\ ze ) -> i e. n ) |
| 14 |
3
|
bnj1235 |
|- ( ch -> f Fn n ) |
| 15 |
14
|
bnj707 |
|- ( ( th /\ ta /\ ch /\ ze ) -> f Fn n ) |
| 16 |
15
|
fndmd |
|- ( ( th /\ ta /\ ch /\ ze ) -> dom f = n ) |
| 17 |
13 16
|
eleqtrrd |
|- ( ( th /\ ta /\ ch /\ ze ) -> i e. dom f ) |
| 18 |
6 13
|
bnj1294 |
|- ( ( th /\ ta /\ ch /\ ze ) -> et ) |
| 19 |
18 5
|
sylib |
|- ( ( th /\ ta /\ ch /\ ze ) -> ( ( f e. K /\ i e. dom f ) -> ( f ` i ) C_ B ) ) |
| 20 |
11 17 19
|
mp2and |
|- ( ( th /\ ta /\ ch /\ ze ) -> ( f ` i ) C_ B ) |
| 21 |
4
|
simprbi |
|- ( ze -> z e. ( f ` i ) ) |
| 22 |
21
|
bnj708 |
|- ( ( th /\ ta /\ ch /\ ze ) -> z e. ( f ` i ) ) |
| 23 |
20 22
|
sseldd |
|- ( ( th /\ ta /\ ch /\ ze ) -> z e. B ) |