Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1416.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1416.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1416.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1416.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
5 |
|
bnj1416.5 |
|- D = { x e. A | -. E. f ta } |
6 |
|
bnj1416.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
7 |
|
bnj1416.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
8 |
|
bnj1416.8 |
|- ( ta' <-> [. y / x ]. ta ) |
9 |
|
bnj1416.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
10 |
|
bnj1416.10 |
|- P = U. H |
11 |
|
bnj1416.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
12 |
|
bnj1416.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
13 |
|
bnj1416.28 |
|- ( ch -> dom P = _trCl ( x , A , R ) ) |
14 |
12
|
dmeqi |
|- dom Q = dom ( P u. { <. x , ( G ` Z ) >. } ) |
15 |
|
dmun |
|- dom ( P u. { <. x , ( G ` Z ) >. } ) = ( dom P u. dom { <. x , ( G ` Z ) >. } ) |
16 |
|
fvex |
|- ( G ` Z ) e. _V |
17 |
16
|
dmsnop |
|- dom { <. x , ( G ` Z ) >. } = { x } |
18 |
17
|
uneq2i |
|- ( dom P u. dom { <. x , ( G ` Z ) >. } ) = ( dom P u. { x } ) |
19 |
14 15 18
|
3eqtri |
|- dom Q = ( dom P u. { x } ) |
20 |
13
|
uneq1d |
|- ( ch -> ( dom P u. { x } ) = ( _trCl ( x , A , R ) u. { x } ) ) |
21 |
|
uncom |
|- ( _trCl ( x , A , R ) u. { x } ) = ( { x } u. _trCl ( x , A , R ) ) |
22 |
20 21
|
eqtrdi |
|- ( ch -> ( dom P u. { x } ) = ( { x } u. _trCl ( x , A , R ) ) ) |
23 |
19 22
|
eqtrid |
|- ( ch -> dom Q = ( { x } u. _trCl ( x , A , R ) ) ) |