Metamath Proof Explorer


Theorem bnj1416

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1416.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1416.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1416.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1416.4
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
bnj1416.5
|- D = { x e. A | -. E. f ta }
bnj1416.6
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
bnj1416.7
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
bnj1416.8
|- ( ta' <-> [. y / x ]. ta )
bnj1416.9
|- H = { f | E. y e. _pred ( x , A , R ) ta' }
bnj1416.10
|- P = U. H
bnj1416.11
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >.
bnj1416.12
|- Q = ( P u. { <. x , ( G ` Z ) >. } )
bnj1416.28
|- ( ch -> dom P = _trCl ( x , A , R ) )
Assertion bnj1416
|- ( ch -> dom Q = ( { x } u. _trCl ( x , A , R ) ) )

Proof

Step Hyp Ref Expression
1 bnj1416.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1416.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1416.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1416.4
 |-  ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
5 bnj1416.5
 |-  D = { x e. A | -. E. f ta }
6 bnj1416.6
 |-  ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
7 bnj1416.7
 |-  ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
8 bnj1416.8
 |-  ( ta' <-> [. y / x ]. ta )
9 bnj1416.9
 |-  H = { f | E. y e. _pred ( x , A , R ) ta' }
10 bnj1416.10
 |-  P = U. H
11 bnj1416.11
 |-  Z = <. x , ( P |` _pred ( x , A , R ) ) >.
12 bnj1416.12
 |-  Q = ( P u. { <. x , ( G ` Z ) >. } )
13 bnj1416.28
 |-  ( ch -> dom P = _trCl ( x , A , R ) )
14 12 dmeqi
 |-  dom Q = dom ( P u. { <. x , ( G ` Z ) >. } )
15 dmun
 |-  dom ( P u. { <. x , ( G ` Z ) >. } ) = ( dom P u. dom { <. x , ( G ` Z ) >. } )
16 fvex
 |-  ( G ` Z ) e. _V
17 16 dmsnop
 |-  dom { <. x , ( G ` Z ) >. } = { x }
18 17 uneq2i
 |-  ( dom P u. dom { <. x , ( G ` Z ) >. } ) = ( dom P u. { x } )
19 14 15 18 3eqtri
 |-  dom Q = ( dom P u. { x } )
20 13 uneq1d
 |-  ( ch -> ( dom P u. { x } ) = ( _trCl ( x , A , R ) u. { x } ) )
21 uncom
 |-  ( _trCl ( x , A , R ) u. { x } ) = ( { x } u. _trCl ( x , A , R ) )
22 20 21 eqtrdi
 |-  ( ch -> ( dom P u. { x } ) = ( { x } u. _trCl ( x , A , R ) ) )
23 19 22 eqtrid
 |-  ( ch -> dom Q = ( { x } u. _trCl ( x , A , R ) ) )