Metamath Proof Explorer


Theorem bnj1416

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1416.1 B=d|dAxdpredxARd
bnj1416.2 Y=xfpredxAR
bnj1416.3 C=f|dBfFndxdfx=GY
bnj1416.4 τfCdomf=xtrClxAR
bnj1416.5 D=xA|¬fτ
bnj1416.6 ψRFrSeAD
bnj1416.7 χψxDyD¬yRx
bnj1416.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1416.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1416.10 P=H
bnj1416.11 Z=xPpredxAR
bnj1416.12 Q=PxGZ
bnj1416.28 χdomP=trClxAR
Assertion bnj1416 χdomQ=xtrClxAR

Proof

Step Hyp Ref Expression
1 bnj1416.1 B=d|dAxdpredxARd
2 bnj1416.2 Y=xfpredxAR
3 bnj1416.3 C=f|dBfFndxdfx=GY
4 bnj1416.4 τfCdomf=xtrClxAR
5 bnj1416.5 D=xA|¬fτ
6 bnj1416.6 ψRFrSeAD
7 bnj1416.7 χψxDyD¬yRx
8 bnj1416.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1416.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1416.10 P=H
11 bnj1416.11 Z=xPpredxAR
12 bnj1416.12 Q=PxGZ
13 bnj1416.28 χdomP=trClxAR
14 12 dmeqi domQ=domPxGZ
15 dmun domPxGZ=domPdomxGZ
16 fvex GZV
17 16 dmsnop domxGZ=x
18 17 uneq2i domPdomxGZ=domPx
19 14 15 18 3eqtri domQ=domPx
20 13 uneq1d χdomPx=trClxARx
21 uncom trClxARx=xtrClxAR
22 20 21 eqtrdi χdomPx=xtrClxAR
23 19 22 eqtrid χdomQ=xtrClxAR