Metamath Proof Explorer


Theorem bnj1449

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1449.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1449.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1449.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1449.4
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
bnj1449.5
|- D = { x e. A | -. E. f ta }
bnj1449.6
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
bnj1449.7
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
bnj1449.8
|- ( ta' <-> [. y / x ]. ta )
bnj1449.9
|- H = { f | E. y e. _pred ( x , A , R ) ta' }
bnj1449.10
|- P = U. H
bnj1449.11
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >.
bnj1449.12
|- Q = ( P u. { <. x , ( G ` Z ) >. } )
bnj1449.13
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >.
bnj1449.14
|- E = ( { x } u. _trCl ( x , A , R ) )
bnj1449.15
|- ( ch -> P Fn _trCl ( x , A , R ) )
bnj1449.16
|- ( ch -> Q Fn ( { x } u. _trCl ( x , A , R ) ) )
bnj1449.17
|- ( th <-> ( ch /\ z e. E ) )
bnj1449.18
|- ( et <-> ( th /\ z e. { x } ) )
bnj1449.19
|- ( ze <-> ( th /\ z e. _trCl ( x , A , R ) ) )
Assertion bnj1449
|- ( ze -> A. f ze )

Proof

Step Hyp Ref Expression
1 bnj1449.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1449.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1449.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1449.4
 |-  ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
5 bnj1449.5
 |-  D = { x e. A | -. E. f ta }
6 bnj1449.6
 |-  ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
7 bnj1449.7
 |-  ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
8 bnj1449.8
 |-  ( ta' <-> [. y / x ]. ta )
9 bnj1449.9
 |-  H = { f | E. y e. _pred ( x , A , R ) ta' }
10 bnj1449.10
 |-  P = U. H
11 bnj1449.11
 |-  Z = <. x , ( P |` _pred ( x , A , R ) ) >.
12 bnj1449.12
 |-  Q = ( P u. { <. x , ( G ` Z ) >. } )
13 bnj1449.13
 |-  W = <. z , ( Q |` _pred ( z , A , R ) ) >.
14 bnj1449.14
 |-  E = ( { x } u. _trCl ( x , A , R ) )
15 bnj1449.15
 |-  ( ch -> P Fn _trCl ( x , A , R ) )
16 bnj1449.16
 |-  ( ch -> Q Fn ( { x } u. _trCl ( x , A , R ) ) )
17 bnj1449.17
 |-  ( th <-> ( ch /\ z e. E ) )
18 bnj1449.18
 |-  ( et <-> ( th /\ z e. { x } ) )
19 bnj1449.19
 |-  ( ze <-> ( th /\ z e. _trCl ( x , A , R ) ) )
20 nfv
 |-  F/ f R _FrSe A
21 nfe1
 |-  F/ f E. f ta
22 21 nfn
 |-  F/ f -. E. f ta
23 nfcv
 |-  F/_ f A
24 22 23 nfrabw
 |-  F/_ f { x e. A | -. E. f ta }
25 5 24 nfcxfr
 |-  F/_ f D
26 nfcv
 |-  F/_ f (/)
27 25 26 nfne
 |-  F/ f D =/= (/)
28 20 27 nfan
 |-  F/ f ( R _FrSe A /\ D =/= (/) )
29 6 28 nfxfr
 |-  F/ f ps
30 25 nfcri
 |-  F/ f x e. D
31 nfv
 |-  F/ f -. y R x
32 25 31 nfralw
 |-  F/ f A. y e. D -. y R x
33 29 30 32 nf3an
 |-  F/ f ( ps /\ x e. D /\ A. y e. D -. y R x )
34 7 33 nfxfr
 |-  F/ f ch
35 nfv
 |-  F/ f z e. E
36 34 35 nfan
 |-  F/ f ( ch /\ z e. E )
37 17 36 nfxfr
 |-  F/ f th
38 nfv
 |-  F/ f z e. _trCl ( x , A , R )
39 37 38 nfan
 |-  F/ f ( th /\ z e. _trCl ( x , A , R ) )
40 19 39 nfxfr
 |-  F/ f ze
41 40 nf5ri
 |-  ( ze -> A. f ze )