Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1449.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1449.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1449.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1449.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
5 |
|
bnj1449.5 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
6 |
|
bnj1449.6 |
⊢ ( 𝜓 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
7 |
|
bnj1449.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
|
bnj1449.8 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
9 |
|
bnj1449.9 |
⊢ 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
10 |
|
bnj1449.10 |
⊢ 𝑃 = ∪ 𝐻 |
11 |
|
bnj1449.11 |
⊢ 𝑍 = 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
12 |
|
bnj1449.12 |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
13 |
|
bnj1449.13 |
⊢ 𝑊 = 〈 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 |
14 |
|
bnj1449.14 |
⊢ 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
15 |
|
bnj1449.15 |
⊢ ( 𝜒 → 𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
16 |
|
bnj1449.16 |
⊢ ( 𝜒 → 𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
17 |
|
bnj1449.17 |
⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ) |
18 |
|
bnj1449.18 |
⊢ ( 𝜂 ↔ ( 𝜃 ∧ 𝑧 ∈ { 𝑥 } ) ) |
19 |
|
bnj1449.19 |
⊢ ( 𝜁 ↔ ( 𝜃 ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
20 |
|
nfv |
⊢ Ⅎ 𝑓 𝑅 FrSe 𝐴 |
21 |
|
nfe1 |
⊢ Ⅎ 𝑓 ∃ 𝑓 𝜏 |
22 |
21
|
nfn |
⊢ Ⅎ 𝑓 ¬ ∃ 𝑓 𝜏 |
23 |
|
nfcv |
⊢ Ⅎ 𝑓 𝐴 |
24 |
22 23
|
nfrabw |
⊢ Ⅎ 𝑓 { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
25 |
5 24
|
nfcxfr |
⊢ Ⅎ 𝑓 𝐷 |
26 |
|
nfcv |
⊢ Ⅎ 𝑓 ∅ |
27 |
25 26
|
nfne |
⊢ Ⅎ 𝑓 𝐷 ≠ ∅ |
28 |
20 27
|
nfan |
⊢ Ⅎ 𝑓 ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) |
29 |
6 28
|
nfxfr |
⊢ Ⅎ 𝑓 𝜓 |
30 |
25
|
nfcri |
⊢ Ⅎ 𝑓 𝑥 ∈ 𝐷 |
31 |
|
nfv |
⊢ Ⅎ 𝑓 ¬ 𝑦 𝑅 𝑥 |
32 |
25 31
|
nfralw |
⊢ Ⅎ 𝑓 ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 |
33 |
29 30 32
|
nf3an |
⊢ Ⅎ 𝑓 ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) |
34 |
7 33
|
nfxfr |
⊢ Ⅎ 𝑓 𝜒 |
35 |
|
nfv |
⊢ Ⅎ 𝑓 𝑧 ∈ 𝐸 |
36 |
34 35
|
nfan |
⊢ Ⅎ 𝑓 ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) |
37 |
17 36
|
nfxfr |
⊢ Ⅎ 𝑓 𝜃 |
38 |
|
nfv |
⊢ Ⅎ 𝑓 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) |
39 |
37 38
|
nfan |
⊢ Ⅎ 𝑓 ( 𝜃 ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
40 |
19 39
|
nfxfr |
⊢ Ⅎ 𝑓 𝜁 |
41 |
40
|
nf5ri |
⊢ ( 𝜁 → ∀ 𝑓 𝜁 ) |