Metamath Proof Explorer


Theorem bnj1449

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1449.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1449.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1449.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1449.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
bnj1449.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
bnj1449.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
bnj1449.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
bnj1449.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
bnj1449.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
bnj1449.10 𝑃 = 𝐻
bnj1449.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1449.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
bnj1449.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
bnj1449.14 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
bnj1449.15 ( 𝜒𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) )
bnj1449.16 ( 𝜒𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
bnj1449.17 ( 𝜃 ↔ ( 𝜒𝑧𝐸 ) )
bnj1449.18 ( 𝜂 ↔ ( 𝜃𝑧 ∈ { 𝑥 } ) )
bnj1449.19 ( 𝜁 ↔ ( 𝜃𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
Assertion bnj1449 ( 𝜁 → ∀ 𝑓 𝜁 )

Proof

Step Hyp Ref Expression
1 bnj1449.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1449.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1449.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1449.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
5 bnj1449.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
6 bnj1449.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
7 bnj1449.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1449.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
9 bnj1449.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
10 bnj1449.10 𝑃 = 𝐻
11 bnj1449.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
12 bnj1449.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
13 bnj1449.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
14 bnj1449.14 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
15 bnj1449.15 ( 𝜒𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) )
16 bnj1449.16 ( 𝜒𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
17 bnj1449.17 ( 𝜃 ↔ ( 𝜒𝑧𝐸 ) )
18 bnj1449.18 ( 𝜂 ↔ ( 𝜃𝑧 ∈ { 𝑥 } ) )
19 bnj1449.19 ( 𝜁 ↔ ( 𝜃𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
20 nfv 𝑓 𝑅 FrSe 𝐴
21 nfe1 𝑓𝑓 𝜏
22 21 nfn 𝑓 ¬ ∃ 𝑓 𝜏
23 nfcv 𝑓 𝐴
24 22 23 nfrabw 𝑓 { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
25 5 24 nfcxfr 𝑓 𝐷
26 nfcv 𝑓
27 25 26 nfne 𝑓 𝐷 ≠ ∅
28 20 27 nfan 𝑓 ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ )
29 6 28 nfxfr 𝑓 𝜓
30 25 nfcri 𝑓 𝑥𝐷
31 nfv 𝑓 ¬ 𝑦 𝑅 𝑥
32 25 31 nfralw 𝑓𝑦𝐷 ¬ 𝑦 𝑅 𝑥
33 29 30 32 nf3an 𝑓 ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 )
34 7 33 nfxfr 𝑓 𝜒
35 nfv 𝑓 𝑧𝐸
36 34 35 nfan 𝑓 ( 𝜒𝑧𝐸 )
37 17 36 nfxfr 𝑓 𝜃
38 nfv 𝑓 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 )
39 37 38 nfan 𝑓 ( 𝜃𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
40 19 39 nfxfr 𝑓 𝜁
41 40 nf5ri ( 𝜁 → ∀ 𝑓 𝜁 )