| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1442.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
| 2 |
|
bnj1442.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
| 3 |
|
bnj1442.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 4 |
|
bnj1442.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
| 5 |
|
bnj1442.5 |
|- D = { x e. A | -. E. f ta } |
| 6 |
|
bnj1442.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
| 7 |
|
bnj1442.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
| 8 |
|
bnj1442.8 |
|- ( ta' <-> [. y / x ]. ta ) |
| 9 |
|
bnj1442.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
| 10 |
|
bnj1442.10 |
|- P = U. H |
| 11 |
|
bnj1442.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
| 12 |
|
bnj1442.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
| 13 |
|
bnj1442.13 |
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >. |
| 14 |
|
bnj1442.14 |
|- E = ( { x } u. _trCl ( x , A , R ) ) |
| 15 |
|
bnj1442.15 |
|- ( ch -> P Fn _trCl ( x , A , R ) ) |
| 16 |
|
bnj1442.16 |
|- ( ch -> Q Fn ( { x } u. _trCl ( x , A , R ) ) ) |
| 17 |
|
bnj1442.17 |
|- ( th <-> ( ch /\ z e. E ) ) |
| 18 |
|
bnj1442.18 |
|- ( et <-> ( th /\ z e. { x } ) ) |
| 19 |
16
|
fnfund |
|- ( ch -> Fun Q ) |
| 20 |
|
opex |
|- <. x , ( G ` Z ) >. e. _V |
| 21 |
20
|
snid |
|- <. x , ( G ` Z ) >. e. { <. x , ( G ` Z ) >. } |
| 22 |
|
elun2 |
|- ( <. x , ( G ` Z ) >. e. { <. x , ( G ` Z ) >. } -> <. x , ( G ` Z ) >. e. ( P u. { <. x , ( G ` Z ) >. } ) ) |
| 23 |
21 22
|
ax-mp |
|- <. x , ( G ` Z ) >. e. ( P u. { <. x , ( G ` Z ) >. } ) |
| 24 |
23 12
|
eleqtrri |
|- <. x , ( G ` Z ) >. e. Q |
| 25 |
|
funopfv |
|- ( Fun Q -> ( <. x , ( G ` Z ) >. e. Q -> ( Q ` x ) = ( G ` Z ) ) ) |
| 26 |
19 24 25
|
mpisyl |
|- ( ch -> ( Q ` x ) = ( G ` Z ) ) |
| 27 |
17 26
|
bnj832 |
|- ( th -> ( Q ` x ) = ( G ` Z ) ) |
| 28 |
18 27
|
bnj832 |
|- ( et -> ( Q ` x ) = ( G ` Z ) ) |
| 29 |
|
elsni |
|- ( z e. { x } -> z = x ) |
| 30 |
18 29
|
simplbiim |
|- ( et -> z = x ) |
| 31 |
30
|
fveq2d |
|- ( et -> ( Q ` z ) = ( Q ` x ) ) |
| 32 |
|
bnj602 |
|- ( z = x -> _pred ( z , A , R ) = _pred ( x , A , R ) ) |
| 33 |
32
|
reseq2d |
|- ( z = x -> ( Q |` _pred ( z , A , R ) ) = ( Q |` _pred ( x , A , R ) ) ) |
| 34 |
30 33
|
syl |
|- ( et -> ( Q |` _pred ( z , A , R ) ) = ( Q |` _pred ( x , A , R ) ) ) |
| 35 |
12
|
bnj931 |
|- P C_ Q |
| 36 |
35
|
a1i |
|- ( ch -> P C_ Q ) |
| 37 |
6
|
simplbi |
|- ( ps -> R _FrSe A ) |
| 38 |
7 37
|
bnj835 |
|- ( ch -> R _FrSe A ) |
| 39 |
5 7
|
bnj1212 |
|- ( ch -> x e. A ) |
| 40 |
|
bnj906 |
|- ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) C_ _trCl ( x , A , R ) ) |
| 41 |
38 39 40
|
syl2anc |
|- ( ch -> _pred ( x , A , R ) C_ _trCl ( x , A , R ) ) |
| 42 |
15
|
fndmd |
|- ( ch -> dom P = _trCl ( x , A , R ) ) |
| 43 |
41 42
|
sseqtrrd |
|- ( ch -> _pred ( x , A , R ) C_ dom P ) |
| 44 |
19 36 43
|
bnj1503 |
|- ( ch -> ( Q |` _pred ( x , A , R ) ) = ( P |` _pred ( x , A , R ) ) ) |
| 45 |
17 44
|
bnj832 |
|- ( th -> ( Q |` _pred ( x , A , R ) ) = ( P |` _pred ( x , A , R ) ) ) |
| 46 |
18 45
|
bnj832 |
|- ( et -> ( Q |` _pred ( x , A , R ) ) = ( P |` _pred ( x , A , R ) ) ) |
| 47 |
34 46
|
eqtrd |
|- ( et -> ( Q |` _pred ( z , A , R ) ) = ( P |` _pred ( x , A , R ) ) ) |
| 48 |
30 47
|
opeq12d |
|- ( et -> <. z , ( Q |` _pred ( z , A , R ) ) >. = <. x , ( P |` _pred ( x , A , R ) ) >. ) |
| 49 |
48 13 11
|
3eqtr4g |
|- ( et -> W = Z ) |
| 50 |
49
|
fveq2d |
|- ( et -> ( G ` W ) = ( G ` Z ) ) |
| 51 |
28 31 50
|
3eqtr4d |
|- ( et -> ( Q ` z ) = ( G ` W ) ) |