Metamath Proof Explorer


Theorem bnj1450

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1450.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1450.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1450.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1450.4
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
bnj1450.5
|- D = { x e. A | -. E. f ta }
bnj1450.6
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
bnj1450.7
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
bnj1450.8
|- ( ta' <-> [. y / x ]. ta )
bnj1450.9
|- H = { f | E. y e. _pred ( x , A , R ) ta' }
bnj1450.10
|- P = U. H
bnj1450.11
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >.
bnj1450.12
|- Q = ( P u. { <. x , ( G ` Z ) >. } )
bnj1450.13
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >.
bnj1450.14
|- E = ( { x } u. _trCl ( x , A , R ) )
bnj1450.15
|- ( ch -> P Fn _trCl ( x , A , R ) )
bnj1450.16
|- ( ch -> Q Fn ( { x } u. _trCl ( x , A , R ) ) )
bnj1450.17
|- ( th <-> ( ch /\ z e. E ) )
bnj1450.18
|- ( et <-> ( th /\ z e. { x } ) )
bnj1450.19
|- ( ze <-> ( th /\ z e. _trCl ( x , A , R ) ) )
bnj1450.20
|- ( rh <-> ( ze /\ f e. H /\ z e. dom f ) )
bnj1450.21
|- ( si <-> ( rh /\ y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) )
bnj1450.22
|- ( ph <-> ( si /\ d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) )
bnj1450.23
|- X = <. z , ( f |` _pred ( z , A , R ) ) >.
Assertion bnj1450
|- ( ze -> ( Q ` z ) = ( G ` W ) )

Proof

Step Hyp Ref Expression
1 bnj1450.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1450.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1450.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1450.4
 |-  ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
5 bnj1450.5
 |-  D = { x e. A | -. E. f ta }
6 bnj1450.6
 |-  ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
7 bnj1450.7
 |-  ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
8 bnj1450.8
 |-  ( ta' <-> [. y / x ]. ta )
9 bnj1450.9
 |-  H = { f | E. y e. _pred ( x , A , R ) ta' }
10 bnj1450.10
 |-  P = U. H
11 bnj1450.11
 |-  Z = <. x , ( P |` _pred ( x , A , R ) ) >.
12 bnj1450.12
 |-  Q = ( P u. { <. x , ( G ` Z ) >. } )
13 bnj1450.13
 |-  W = <. z , ( Q |` _pred ( z , A , R ) ) >.
14 bnj1450.14
 |-  E = ( { x } u. _trCl ( x , A , R ) )
15 bnj1450.15
 |-  ( ch -> P Fn _trCl ( x , A , R ) )
16 bnj1450.16
 |-  ( ch -> Q Fn ( { x } u. _trCl ( x , A , R ) ) )
17 bnj1450.17
 |-  ( th <-> ( ch /\ z e. E ) )
18 bnj1450.18
 |-  ( et <-> ( th /\ z e. { x } ) )
19 bnj1450.19
 |-  ( ze <-> ( th /\ z e. _trCl ( x , A , R ) ) )
20 bnj1450.20
 |-  ( rh <-> ( ze /\ f e. H /\ z e. dom f ) )
21 bnj1450.21
 |-  ( si <-> ( rh /\ y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) )
22 bnj1450.22
 |-  ( ph <-> ( si /\ d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) )
23 bnj1450.23
 |-  X = <. z , ( f |` _pred ( z , A , R ) ) >.
24 19 simprbi
 |-  ( ze -> z e. _trCl ( x , A , R ) )
25 15 fndmd
 |-  ( ch -> dom P = _trCl ( x , A , R ) )
26 17 25 bnj832
 |-  ( th -> dom P = _trCl ( x , A , R ) )
27 19 26 bnj832
 |-  ( ze -> dom P = _trCl ( x , A , R ) )
28 24 27 eleqtrrd
 |-  ( ze -> z e. dom P )
29 10 dmeqi
 |-  dom P = dom U. H
30 28 29 eleqtrdi
 |-  ( ze -> z e. dom U. H )
31 9 bnj1317
 |-  ( w e. H -> A. f w e. H )
32 31 bnj1400
 |-  dom U. H = U_ f e. H dom f
33 30 32 eleqtrdi
 |-  ( ze -> z e. U_ f e. H dom f )
34 33 bnj1405
 |-  ( ze -> E. f e. H z e. dom f )
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 bnj1449
 |-  ( ze -> A. f ze )
36 34 20 35 bnj1521
 |-  ( ze -> E. f rh )
37 9 bnj1436
 |-  ( f e. H -> E. y e. _pred ( x , A , R ) ta' )
38 20 37 bnj836
 |-  ( rh -> E. y e. _pred ( x , A , R ) ta' )
39 1 2 3 4 8 bnj1373
 |-  ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) )
40 39 rexbii
 |-  ( E. y e. _pred ( x , A , R ) ta' <-> E. y e. _pred ( x , A , R ) ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) )
41 38 40 sylib
 |-  ( rh -> E. y e. _pred ( x , A , R ) ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) )
42 41 bnj1196
 |-  ( rh -> E. y ( y e. _pred ( x , A , R ) /\ ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) )
43 3anass
 |-  ( ( y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) <-> ( y e. _pred ( x , A , R ) /\ ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) )
44 42 43 bnj1198
 |-  ( rh -> E. y ( y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) )
45 bnj252
 |-  ( ( rh /\ y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) <-> ( rh /\ ( y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) )
46 21 45 bitri
 |-  ( si <-> ( rh /\ ( y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) )
47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 bnj1444
 |-  ( rh -> A. y rh )
48 44 46 47 bnj1340
 |-  ( rh -> E. y si )
49 3 bnj1436
 |-  ( f e. C -> E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) )
50 21 49 bnj771
 |-  ( si -> E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) )
51 50 bnj1196
 |-  ( si -> E. d ( d e. B /\ ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) )
52 3anass
 |-  ( ( d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> ( d e. B /\ ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) )
53 51 52 bnj1198
 |-  ( si -> E. d ( d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) )
54 bnj252
 |-  ( ( si /\ d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> ( si /\ ( d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) )
55 22 54 bitri
 |-  ( ph <-> ( si /\ ( d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) )
56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 bnj1445
 |-  ( si -> A. d si )
57 53 55 56 bnj1340
 |-  ( si -> E. d ph )
58 fveq2
 |-  ( x = z -> ( f ` x ) = ( f ` z ) )
59 id
 |-  ( x = z -> x = z )
60 bnj602
 |-  ( x = z -> _pred ( x , A , R ) = _pred ( z , A , R ) )
61 60 reseq2d
 |-  ( x = z -> ( f |` _pred ( x , A , R ) ) = ( f |` _pred ( z , A , R ) ) )
62 59 61 opeq12d
 |-  ( x = z -> <. x , ( f |` _pred ( x , A , R ) ) >. = <. z , ( f |` _pred ( z , A , R ) ) >. )
63 62 2 23 3eqtr4g
 |-  ( x = z -> Y = X )
64 63 fveq2d
 |-  ( x = z -> ( G ` Y ) = ( G ` X ) )
65 58 64 eqeq12d
 |-  ( x = z -> ( ( f ` x ) = ( G ` Y ) <-> ( f ` z ) = ( G ` X ) ) )
66 22 bnj1254
 |-  ( ph -> A. x e. d ( f ` x ) = ( G ` Y ) )
67 20 simp3bi
 |-  ( rh -> z e. dom f )
68 21 67 bnj769
 |-  ( si -> z e. dom f )
69 22 68 bnj769
 |-  ( ph -> z e. dom f )
70 fndm
 |-  ( f Fn d -> dom f = d )
71 22 70 bnj771
 |-  ( ph -> dom f = d )
72 69 71 eleqtrd
 |-  ( ph -> z e. d )
73 65 66 72 rspcdva
 |-  ( ph -> ( f ` z ) = ( G ` X ) )
74 16 bnj930
 |-  ( ch -> Fun Q )
75 17 74 bnj832
 |-  ( th -> Fun Q )
76 19 75 bnj832
 |-  ( ze -> Fun Q )
77 20 76 bnj835
 |-  ( rh -> Fun Q )
78 21 77 bnj769
 |-  ( si -> Fun Q )
79 22 78 bnj769
 |-  ( ph -> Fun Q )
80 20 simp2bi
 |-  ( rh -> f e. H )
81 21 80 bnj769
 |-  ( si -> f e. H )
82 22 81 bnj769
 |-  ( ph -> f e. H )
83 elssuni
 |-  ( f e. H -> f C_ U. H )
84 83 10 sseqtrrdi
 |-  ( f e. H -> f C_ P )
85 ssun3
 |-  ( f C_ P -> f C_ ( P u. { <. x , ( G ` Z ) >. } ) )
86 85 12 sseqtrrdi
 |-  ( f C_ P -> f C_ Q )
87 82 84 86 3syl
 |-  ( ph -> f C_ Q )
88 79 87 69 bnj1502
 |-  ( ph -> ( Q ` z ) = ( f ` z ) )
89 60 sseq1d
 |-  ( x = z -> ( _pred ( x , A , R ) C_ d <-> _pred ( z , A , R ) C_ d ) )
90 1 bnj1517
 |-  ( d e. B -> A. x e. d _pred ( x , A , R ) C_ d )
91 22 90 bnj770
 |-  ( ph -> A. x e. d _pred ( x , A , R ) C_ d )
92 89 91 72 rspcdva
 |-  ( ph -> _pred ( z , A , R ) C_ d )
93 92 71 sseqtrrd
 |-  ( ph -> _pred ( z , A , R ) C_ dom f )
94 79 87 93 bnj1503
 |-  ( ph -> ( Q |` _pred ( z , A , R ) ) = ( f |` _pred ( z , A , R ) ) )
95 94 opeq2d
 |-  ( ph -> <. z , ( Q |` _pred ( z , A , R ) ) >. = <. z , ( f |` _pred ( z , A , R ) ) >. )
96 95 13 23 3eqtr4g
 |-  ( ph -> W = X )
97 96 fveq2d
 |-  ( ph -> ( G ` W ) = ( G ` X ) )
98 73 88 97 3eqtr4d
 |-  ( ph -> ( Q ` z ) = ( G ` W ) )
99 57 98 bnj593
 |-  ( si -> E. d ( Q ` z ) = ( G ` W ) )
100 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1446
 |-  ( ( Q ` z ) = ( G ` W ) -> A. d ( Q ` z ) = ( G ` W ) )
101 99 100 bnj1397
 |-  ( si -> ( Q ` z ) = ( G ` W ) )
102 48 101 bnj593
 |-  ( rh -> E. y ( Q ` z ) = ( G ` W ) )
103 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1447
 |-  ( ( Q ` z ) = ( G ` W ) -> A. y ( Q ` z ) = ( G ` W ) )
104 102 103 bnj1397
 |-  ( rh -> ( Q ` z ) = ( G ` W ) )
105 36 104 bnj593
 |-  ( ze -> E. f ( Q ` z ) = ( G ` W ) )
106 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1448
 |-  ( ( Q ` z ) = ( G ` W ) -> A. f ( Q ` z ) = ( G ` W ) )
107 105 106 bnj1397
 |-  ( ze -> ( Q ` z ) = ( G ` W ) )