| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1445.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
| 2 |
|
bnj1445.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
| 3 |
|
bnj1445.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 4 |
|
bnj1445.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
| 5 |
|
bnj1445.5 |
|- D = { x e. A | -. E. f ta } |
| 6 |
|
bnj1445.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
| 7 |
|
bnj1445.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
| 8 |
|
bnj1445.8 |
|- ( ta' <-> [. y / x ]. ta ) |
| 9 |
|
bnj1445.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
| 10 |
|
bnj1445.10 |
|- P = U. H |
| 11 |
|
bnj1445.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
| 12 |
|
bnj1445.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
| 13 |
|
bnj1445.13 |
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >. |
| 14 |
|
bnj1445.14 |
|- E = ( { x } u. _trCl ( x , A , R ) ) |
| 15 |
|
bnj1445.15 |
|- ( ch -> P Fn _trCl ( x , A , R ) ) |
| 16 |
|
bnj1445.16 |
|- ( ch -> Q Fn ( { x } u. _trCl ( x , A , R ) ) ) |
| 17 |
|
bnj1445.17 |
|- ( th <-> ( ch /\ z e. E ) ) |
| 18 |
|
bnj1445.18 |
|- ( et <-> ( th /\ z e. { x } ) ) |
| 19 |
|
bnj1445.19 |
|- ( ze <-> ( th /\ z e. _trCl ( x , A , R ) ) ) |
| 20 |
|
bnj1445.20 |
|- ( rh <-> ( ze /\ f e. H /\ z e. dom f ) ) |
| 21 |
|
bnj1445.21 |
|- ( si <-> ( rh /\ y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
| 22 |
|
bnj1445.22 |
|- ( ph <-> ( si /\ d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) |
| 23 |
|
bnj1445.23 |
|- X = <. z , ( f |` _pred ( z , A , R ) ) >. |
| 24 |
|
nfv |
|- F/ d R _FrSe A |
| 25 |
|
nfre1 |
|- F/ d E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) |
| 26 |
25
|
nfab |
|- F/_ d { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 27 |
3 26
|
nfcxfr |
|- F/_ d C |
| 28 |
27
|
nfcri |
|- F/ d f e. C |
| 29 |
|
nfv |
|- F/ d dom f = ( { x } u. _trCl ( x , A , R ) ) |
| 30 |
28 29
|
nfan |
|- F/ d ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) |
| 31 |
4 30
|
nfxfr |
|- F/ d ta |
| 32 |
31
|
nfex |
|- F/ d E. f ta |
| 33 |
32
|
nfn |
|- F/ d -. E. f ta |
| 34 |
|
nfcv |
|- F/_ d A |
| 35 |
33 34
|
nfrabw |
|- F/_ d { x e. A | -. E. f ta } |
| 36 |
5 35
|
nfcxfr |
|- F/_ d D |
| 37 |
|
nfcv |
|- F/_ d (/) |
| 38 |
36 37
|
nfne |
|- F/ d D =/= (/) |
| 39 |
24 38
|
nfan |
|- F/ d ( R _FrSe A /\ D =/= (/) ) |
| 40 |
6 39
|
nfxfr |
|- F/ d ps |
| 41 |
36
|
nfcri |
|- F/ d x e. D |
| 42 |
|
nfv |
|- F/ d -. y R x |
| 43 |
36 42
|
nfralw |
|- F/ d A. y e. D -. y R x |
| 44 |
40 41 43
|
nf3an |
|- F/ d ( ps /\ x e. D /\ A. y e. D -. y R x ) |
| 45 |
7 44
|
nfxfr |
|- F/ d ch |
| 46 |
45
|
nf5ri |
|- ( ch -> A. d ch ) |
| 47 |
46
|
bnj1351 |
|- ( ( ch /\ z e. E ) -> A. d ( ch /\ z e. E ) ) |
| 48 |
47
|
nf5i |
|- F/ d ( ch /\ z e. E ) |
| 49 |
17 48
|
nfxfr |
|- F/ d th |
| 50 |
|
nfv |
|- F/ d z e. _trCl ( x , A , R ) |
| 51 |
49 50
|
nfan |
|- F/ d ( th /\ z e. _trCl ( x , A , R ) ) |
| 52 |
19 51
|
nfxfr |
|- F/ d ze |
| 53 |
|
nfcv |
|- F/_ d _pred ( x , A , R ) |
| 54 |
|
nfcv |
|- F/_ d y |
| 55 |
54 31
|
nfsbcw |
|- F/ d [. y / x ]. ta |
| 56 |
8 55
|
nfxfr |
|- F/ d ta' |
| 57 |
53 56
|
nfrexw |
|- F/ d E. y e. _pred ( x , A , R ) ta' |
| 58 |
57
|
nfab |
|- F/_ d { f | E. y e. _pred ( x , A , R ) ta' } |
| 59 |
9 58
|
nfcxfr |
|- F/_ d H |
| 60 |
59
|
nfcri |
|- F/ d f e. H |
| 61 |
|
nfv |
|- F/ d z e. dom f |
| 62 |
52 60 61
|
nf3an |
|- F/ d ( ze /\ f e. H /\ z e. dom f ) |
| 63 |
20 62
|
nfxfr |
|- F/ d rh |
| 64 |
63
|
nf5ri |
|- ( rh -> A. d rh ) |
| 65 |
|
ax-5 |
|- ( y e. _pred ( x , A , R ) -> A. d y e. _pred ( x , A , R ) ) |
| 66 |
28
|
nf5ri |
|- ( f e. C -> A. d f e. C ) |
| 67 |
|
ax-5 |
|- ( dom f = ( { y } u. _trCl ( y , A , R ) ) -> A. d dom f = ( { y } u. _trCl ( y , A , R ) ) ) |
| 68 |
64 65 66 67
|
bnj982 |
|- ( ( rh /\ y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) -> A. d ( rh /\ y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
| 69 |
21 68
|
hbxfrbi |
|- ( si -> A. d si ) |