| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1450.1 |
|
| 2 |
|
bnj1450.2 |
|
| 3 |
|
bnj1450.3 |
|
| 4 |
|
bnj1450.4 |
|
| 5 |
|
bnj1450.5 |
|
| 6 |
|
bnj1450.6 |
|
| 7 |
|
bnj1450.7 |
|
| 8 |
|
bnj1450.8 |
Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |- |
| 9 |
|
bnj1450.9 |
Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |- |
| 10 |
|
bnj1450.10 |
|
| 11 |
|
bnj1450.11 |
|
| 12 |
|
bnj1450.12 |
|
| 13 |
|
bnj1450.13 |
|
| 14 |
|
bnj1450.14 |
|
| 15 |
|
bnj1450.15 |
|
| 16 |
|
bnj1450.16 |
|
| 17 |
|
bnj1450.17 |
|
| 18 |
|
bnj1450.18 |
|
| 19 |
|
bnj1450.19 |
|
| 20 |
|
bnj1450.20 |
|
| 21 |
|
bnj1450.21 |
|
| 22 |
|
bnj1450.22 |
|
| 23 |
|
bnj1450.23 |
|
| 24 |
19
|
simprbi |
|
| 25 |
15
|
fndmd |
|
| 26 |
17 25
|
bnj832 |
|
| 27 |
19 26
|
bnj832 |
|
| 28 |
24 27
|
eleqtrrd |
|
| 29 |
10
|
dmeqi |
|
| 30 |
28 29
|
eleqtrdi |
|
| 31 |
9
|
bnj1317 |
|
| 32 |
31
|
bnj1400 |
|
| 33 |
30 32
|
eleqtrdi |
|
| 34 |
33
|
bnj1405 |
|
| 35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
bnj1449 |
|
| 36 |
34 20 35
|
bnj1521 |
|
| 37 |
9
|
bnj1436 |
Could not format ( f e. H -> E. y e. _pred ( x , A , R ) ta' ) : No typesetting found for |- ( f e. H -> E. y e. _pred ( x , A , R ) ta' ) with typecode |- |
| 38 |
20 37
|
bnj836 |
Could not format ( rh -> E. y e. _pred ( x , A , R ) ta' ) : No typesetting found for |- ( rh -> E. y e. _pred ( x , A , R ) ta' ) with typecode |- |
| 39 |
1 2 3 4 8
|
bnj1373 |
Could not format ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) : No typesetting found for |- ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) with typecode |- |
| 40 |
39
|
rexbii |
Could not format ( E. y e. _pred ( x , A , R ) ta' <-> E. y e. _pred ( x , A , R ) ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) : No typesetting found for |- ( E. y e. _pred ( x , A , R ) ta' <-> E. y e. _pred ( x , A , R ) ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) with typecode |- |
| 41 |
38 40
|
sylib |
|
| 42 |
41
|
bnj1196 |
|
| 43 |
|
3anass |
|
| 44 |
42 43
|
bnj1198 |
|
| 45 |
|
bnj252 |
|
| 46 |
21 45
|
bitri |
|
| 47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
bnj1444 |
|
| 48 |
44 46 47
|
bnj1340 |
|
| 49 |
3
|
bnj1436 |
|
| 50 |
21 49
|
bnj771 |
|
| 51 |
50
|
bnj1196 |
|
| 52 |
|
3anass |
|
| 53 |
51 52
|
bnj1198 |
|
| 54 |
|
bnj252 |
|
| 55 |
22 54
|
bitri |
|
| 56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
bnj1445 |
|
| 57 |
53 55 56
|
bnj1340 |
|
| 58 |
|
fveq2 |
|
| 59 |
|
id |
|
| 60 |
|
bnj602 |
|
| 61 |
60
|
reseq2d |
|
| 62 |
59 61
|
opeq12d |
|
| 63 |
62 2 23
|
3eqtr4g |
|
| 64 |
63
|
fveq2d |
|
| 65 |
58 64
|
eqeq12d |
|
| 66 |
22
|
bnj1254 |
|
| 67 |
20
|
simp3bi |
|
| 68 |
21 67
|
bnj769 |
|
| 69 |
22 68
|
bnj769 |
|
| 70 |
|
fndm |
|
| 71 |
22 70
|
bnj771 |
|
| 72 |
69 71
|
eleqtrd |
|
| 73 |
65 66 72
|
rspcdva |
|
| 74 |
16
|
fnfund |
|
| 75 |
17 74
|
bnj832 |
|
| 76 |
19 75
|
bnj832 |
|
| 77 |
20 76
|
bnj835 |
|
| 78 |
21 77
|
bnj769 |
|
| 79 |
22 78
|
bnj769 |
|
| 80 |
20
|
simp2bi |
|
| 81 |
21 80
|
bnj769 |
|
| 82 |
22 81
|
bnj769 |
|
| 83 |
|
elssuni |
|
| 84 |
83 10
|
sseqtrrdi |
|
| 85 |
|
ssun3 |
|
| 86 |
85 12
|
sseqtrrdi |
|
| 87 |
82 84 86
|
3syl |
|
| 88 |
79 87 69
|
bnj1502 |
|
| 89 |
60
|
sseq1d |
|
| 90 |
1
|
bnj1517 |
|
| 91 |
22 90
|
bnj770 |
|
| 92 |
89 91 72
|
rspcdva |
|
| 93 |
92 71
|
sseqtrrd |
|
| 94 |
79 87 93
|
bnj1503 |
|
| 95 |
94
|
opeq2d |
|
| 96 |
95 13 23
|
3eqtr4g |
|
| 97 |
96
|
fveq2d |
|
| 98 |
73 88 97
|
3eqtr4d |
|
| 99 |
57 98
|
bnj593 |
|
| 100 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1446 |
|
| 101 |
99 100
|
bnj1397 |
|
| 102 |
48 101
|
bnj593 |
|
| 103 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1447 |
|
| 104 |
102 103
|
bnj1397 |
|
| 105 |
36 104
|
bnj593 |
|
| 106 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1448 |
|
| 107 |
105 106
|
bnj1397 |
|