Metamath Proof Explorer


Theorem bnj1423

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1423.1 B=d|dAxdpredxARd
bnj1423.2 Y=xfpredxAR
bnj1423.3 C=f|dBfFndxdfx=GY
bnj1423.4 τfCdomf=xtrClxAR
bnj1423.5 D=xA|¬fτ
bnj1423.6 ψRFrSeAD
bnj1423.7 χψxDyD¬yRx
bnj1423.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1423.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1423.10 P=H
bnj1423.11 Z=xPpredxAR
bnj1423.12 Q=PxGZ
bnj1423.13 W=zQpredzAR
bnj1423.14 E=xtrClxAR
bnj1423.15 χPFntrClxAR
bnj1423.16 χQFnxtrClxAR
Assertion bnj1423 χzEQz=GW

Proof

Step Hyp Ref Expression
1 bnj1423.1 B=d|dAxdpredxARd
2 bnj1423.2 Y=xfpredxAR
3 bnj1423.3 C=f|dBfFndxdfx=GY
4 bnj1423.4 τfCdomf=xtrClxAR
5 bnj1423.5 D=xA|¬fτ
6 bnj1423.6 ψRFrSeAD
7 bnj1423.7 χψxDyD¬yRx
8 bnj1423.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1423.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1423.10 P=H
11 bnj1423.11 Z=xPpredxAR
12 bnj1423.12 Q=PxGZ
13 bnj1423.13 W=zQpredzAR
14 bnj1423.14 E=xtrClxAR
15 bnj1423.15 χPFntrClxAR
16 bnj1423.16 χQFnxtrClxAR
17 biid χzEχzE
18 biid χzEzxχzEzx
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 bnj1442 χzEzxQz=GW
20 biid χzEztrClxARχzEztrClxAR
21 biid χzEztrClxARfHzdomfχzEztrClxARfHzdomf
22 biid χzEztrClxARfHzdomfypredxARfCdomf=ytrClyARχzEztrClxARfHzdomfypredxARfCdomf=ytrClyAR
23 biid χzEztrClxARfHzdomfypredxARfCdomf=ytrClyARdBfFndxdfx=GYχzEztrClxARfHzdomfypredxARfCdomf=ytrClyARdBfFndxdfx=GY
24 eqid zfpredzAR=zfpredzAR
25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 bnj1450 χzEztrClxARQz=GW
26 14 bnj1424 zEzxztrClxAR
27 26 adantl χzEzxztrClxAR
28 19 25 27 mpjaodan χzEQz=GW
29 28 ralrimiva χzEQz=GW