| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1450.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
| 2 |
|
bnj1450.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 3 |
|
bnj1450.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 4 |
|
bnj1450.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
| 5 |
|
bnj1450.5 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
| 6 |
|
bnj1450.6 |
⊢ ( 𝜓 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
| 7 |
|
bnj1450.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) ) |
| 8 |
|
bnj1450.8 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
| 9 |
|
bnj1450.9 |
⊢ 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
| 10 |
|
bnj1450.10 |
⊢ 𝑃 = ∪ 𝐻 |
| 11 |
|
bnj1450.11 |
⊢ 𝑍 = 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 12 |
|
bnj1450.12 |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
| 13 |
|
bnj1450.13 |
⊢ 𝑊 = 〈 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 |
| 14 |
|
bnj1450.14 |
⊢ 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 15 |
|
bnj1450.15 |
⊢ ( 𝜒 → 𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 16 |
|
bnj1450.16 |
⊢ ( 𝜒 → 𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
| 17 |
|
bnj1450.17 |
⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ) |
| 18 |
|
bnj1450.18 |
⊢ ( 𝜂 ↔ ( 𝜃 ∧ 𝑧 ∈ { 𝑥 } ) ) |
| 19 |
|
bnj1450.19 |
⊢ ( 𝜁 ↔ ( 𝜃 ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
| 20 |
|
bnj1450.20 |
⊢ ( 𝜌 ↔ ( 𝜁 ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓 ) ) |
| 21 |
|
bnj1450.21 |
⊢ ( 𝜎 ↔ ( 𝜌 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 22 |
|
bnj1450.22 |
⊢ ( 𝜑 ↔ ( 𝜎 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
| 23 |
|
bnj1450.23 |
⊢ 𝑋 = 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 |
| 24 |
19
|
simprbi |
⊢ ( 𝜁 → 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 25 |
15
|
fndmd |
⊢ ( 𝜒 → dom 𝑃 = trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 26 |
17 25
|
bnj832 |
⊢ ( 𝜃 → dom 𝑃 = trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 27 |
19 26
|
bnj832 |
⊢ ( 𝜁 → dom 𝑃 = trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 28 |
24 27
|
eleqtrrd |
⊢ ( 𝜁 → 𝑧 ∈ dom 𝑃 ) |
| 29 |
10
|
dmeqi |
⊢ dom 𝑃 = dom ∪ 𝐻 |
| 30 |
28 29
|
eleqtrdi |
⊢ ( 𝜁 → 𝑧 ∈ dom ∪ 𝐻 ) |
| 31 |
9
|
bnj1317 |
⊢ ( 𝑤 ∈ 𝐻 → ∀ 𝑓 𝑤 ∈ 𝐻 ) |
| 32 |
31
|
bnj1400 |
⊢ dom ∪ 𝐻 = ∪ 𝑓 ∈ 𝐻 dom 𝑓 |
| 33 |
30 32
|
eleqtrdi |
⊢ ( 𝜁 → 𝑧 ∈ ∪ 𝑓 ∈ 𝐻 dom 𝑓 ) |
| 34 |
33
|
bnj1405 |
⊢ ( 𝜁 → ∃ 𝑓 ∈ 𝐻 𝑧 ∈ dom 𝑓 ) |
| 35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
bnj1449 |
⊢ ( 𝜁 → ∀ 𝑓 𝜁 ) |
| 36 |
34 20 35
|
bnj1521 |
⊢ ( 𝜁 → ∃ 𝑓 𝜌 ) |
| 37 |
9
|
bnj1436 |
⊢ ( 𝑓 ∈ 𝐻 → ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ ) |
| 38 |
20 37
|
bnj836 |
⊢ ( 𝜌 → ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ ) |
| 39 |
1 2 3 4 8
|
bnj1373 |
⊢ ( 𝜏′ ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 40 |
39
|
rexbii |
⊢ ( ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ ↔ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 41 |
38 40
|
sylib |
⊢ ( 𝜌 → ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 42 |
41
|
bnj1196 |
⊢ ( 𝜌 → ∃ 𝑦 ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
| 43 |
|
3anass |
⊢ ( ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
| 44 |
42 43
|
bnj1198 |
⊢ ( 𝜌 → ∃ 𝑦 ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 45 |
|
bnj252 |
⊢ ( ( 𝜌 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝜌 ∧ ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
| 46 |
21 45
|
bitri |
⊢ ( 𝜎 ↔ ( 𝜌 ∧ ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
| 47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
bnj1444 |
⊢ ( 𝜌 → ∀ 𝑦 𝜌 ) |
| 48 |
44 46 47
|
bnj1340 |
⊢ ( 𝜌 → ∃ 𝑦 𝜎 ) |
| 49 |
3
|
bnj1436 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
| 50 |
21 49
|
bnj771 |
⊢ ( 𝜎 → ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
| 51 |
50
|
bnj1196 |
⊢ ( 𝜎 → ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 52 |
|
3anass |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ↔ ( 𝑑 ∈ 𝐵 ∧ ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 53 |
51 52
|
bnj1198 |
⊢ ( 𝜎 → ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
| 54 |
|
bnj252 |
⊢ ( ( 𝜎 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ↔ ( 𝜎 ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 55 |
22 54
|
bitri |
⊢ ( 𝜑 ↔ ( 𝜎 ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
bnj1445 |
⊢ ( 𝜎 → ∀ 𝑑 𝜎 ) |
| 57 |
53 55 56
|
bnj1340 |
⊢ ( 𝜎 → ∃ 𝑑 𝜑 ) |
| 58 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 59 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
| 60 |
|
bnj602 |
⊢ ( 𝑥 = 𝑧 → pred ( 𝑥 , 𝐴 , 𝑅 ) = pred ( 𝑧 , 𝐴 , 𝑅 ) ) |
| 61 |
60
|
reseq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ) |
| 62 |
59 61
|
opeq12d |
⊢ ( 𝑥 = 𝑧 → 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) |
| 63 |
62 2 23
|
3eqtr4g |
⊢ ( 𝑥 = 𝑧 → 𝑌 = 𝑋 ) |
| 64 |
63
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐺 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 65 |
58 64
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ↔ ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑋 ) ) ) |
| 66 |
22
|
bnj1254 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
| 67 |
20
|
simp3bi |
⊢ ( 𝜌 → 𝑧 ∈ dom 𝑓 ) |
| 68 |
21 67
|
bnj769 |
⊢ ( 𝜎 → 𝑧 ∈ dom 𝑓 ) |
| 69 |
22 68
|
bnj769 |
⊢ ( 𝜑 → 𝑧 ∈ dom 𝑓 ) |
| 70 |
|
fndm |
⊢ ( 𝑓 Fn 𝑑 → dom 𝑓 = 𝑑 ) |
| 71 |
22 70
|
bnj771 |
⊢ ( 𝜑 → dom 𝑓 = 𝑑 ) |
| 72 |
69 71
|
eleqtrd |
⊢ ( 𝜑 → 𝑧 ∈ 𝑑 ) |
| 73 |
65 66 72
|
rspcdva |
⊢ ( 𝜑 → ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 74 |
16
|
fnfund |
⊢ ( 𝜒 → Fun 𝑄 ) |
| 75 |
17 74
|
bnj832 |
⊢ ( 𝜃 → Fun 𝑄 ) |
| 76 |
19 75
|
bnj832 |
⊢ ( 𝜁 → Fun 𝑄 ) |
| 77 |
20 76
|
bnj835 |
⊢ ( 𝜌 → Fun 𝑄 ) |
| 78 |
21 77
|
bnj769 |
⊢ ( 𝜎 → Fun 𝑄 ) |
| 79 |
22 78
|
bnj769 |
⊢ ( 𝜑 → Fun 𝑄 ) |
| 80 |
20
|
simp2bi |
⊢ ( 𝜌 → 𝑓 ∈ 𝐻 ) |
| 81 |
21 80
|
bnj769 |
⊢ ( 𝜎 → 𝑓 ∈ 𝐻 ) |
| 82 |
22 81
|
bnj769 |
⊢ ( 𝜑 → 𝑓 ∈ 𝐻 ) |
| 83 |
|
elssuni |
⊢ ( 𝑓 ∈ 𝐻 → 𝑓 ⊆ ∪ 𝐻 ) |
| 84 |
83 10
|
sseqtrrdi |
⊢ ( 𝑓 ∈ 𝐻 → 𝑓 ⊆ 𝑃 ) |
| 85 |
|
ssun3 |
⊢ ( 𝑓 ⊆ 𝑃 → 𝑓 ⊆ ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) ) |
| 86 |
85 12
|
sseqtrrdi |
⊢ ( 𝑓 ⊆ 𝑃 → 𝑓 ⊆ 𝑄 ) |
| 87 |
82 84 86
|
3syl |
⊢ ( 𝜑 → 𝑓 ⊆ 𝑄 ) |
| 88 |
79 87 69
|
bnj1502 |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 89 |
60
|
sseq1d |
⊢ ( 𝑥 = 𝑧 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ↔ pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) ) |
| 90 |
1
|
bnj1517 |
⊢ ( 𝑑 ∈ 𝐵 → ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) |
| 91 |
22 90
|
bnj770 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) |
| 92 |
89 91 72
|
rspcdva |
⊢ ( 𝜑 → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) |
| 93 |
92 71
|
sseqtrrd |
⊢ ( 𝜑 → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ dom 𝑓 ) |
| 94 |
79 87 93
|
bnj1503 |
⊢ ( 𝜑 → ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) = ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ) |
| 95 |
94
|
opeq2d |
⊢ ( 𝜑 → 〈 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) |
| 96 |
95 13 23
|
3eqtr4g |
⊢ ( 𝜑 → 𝑊 = 𝑋 ) |
| 97 |
96
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑊 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 98 |
73 88 97
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 99 |
57 98
|
bnj593 |
⊢ ( 𝜎 → ∃ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 100 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1446 |
⊢ ( ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) → ∀ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 101 |
99 100
|
bnj1397 |
⊢ ( 𝜎 → ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 102 |
48 101
|
bnj593 |
⊢ ( 𝜌 → ∃ 𝑦 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 103 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1447 |
⊢ ( ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) → ∀ 𝑦 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 104 |
102 103
|
bnj1397 |
⊢ ( 𝜌 → ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 105 |
36 104
|
bnj593 |
⊢ ( 𝜁 → ∃ 𝑓 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 106 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1448 |
⊢ ( ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) → ∀ 𝑓 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 107 |
105 106
|
bnj1397 |
⊢ ( 𝜁 → ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |