| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1529.1 |
|- ( ch -> A. x e. A ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |
| 2 |
|
bnj1529.2 |
|- ( w e. F -> A. x w e. F ) |
| 3 |
|
nfv |
|- F/ y ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) |
| 4 |
2
|
nfcii |
|- F/_ x F |
| 5 |
|
nfcv |
|- F/_ x y |
| 6 |
4 5
|
nffv |
|- F/_ x ( F ` y ) |
| 7 |
|
nfcv |
|- F/_ x G |
| 8 |
|
nfcv |
|- F/_ x _pred ( y , A , R ) |
| 9 |
4 8
|
nfres |
|- F/_ x ( F |` _pred ( y , A , R ) ) |
| 10 |
5 9
|
nfop |
|- F/_ x <. y , ( F |` _pred ( y , A , R ) ) >. |
| 11 |
7 10
|
nffv |
|- F/_ x ( G ` <. y , ( F |` _pred ( y , A , R ) ) >. ) |
| 12 |
6 11
|
nfeq |
|- F/ x ( F ` y ) = ( G ` <. y , ( F |` _pred ( y , A , R ) ) >. ) |
| 13 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
| 14 |
|
id |
|- ( x = y -> x = y ) |
| 15 |
|
bnj602 |
|- ( x = y -> _pred ( x , A , R ) = _pred ( y , A , R ) ) |
| 16 |
15
|
reseq2d |
|- ( x = y -> ( F |` _pred ( x , A , R ) ) = ( F |` _pred ( y , A , R ) ) ) |
| 17 |
14 16
|
opeq12d |
|- ( x = y -> <. x , ( F |` _pred ( x , A , R ) ) >. = <. y , ( F |` _pred ( y , A , R ) ) >. ) |
| 18 |
17
|
fveq2d |
|- ( x = y -> ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) = ( G ` <. y , ( F |` _pred ( y , A , R ) ) >. ) ) |
| 19 |
13 18
|
eqeq12d |
|- ( x = y -> ( ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) <-> ( F ` y ) = ( G ` <. y , ( F |` _pred ( y , A , R ) ) >. ) ) ) |
| 20 |
3 12 19
|
cbvralw |
|- ( A. x e. A ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) <-> A. y e. A ( F ` y ) = ( G ` <. y , ( F |` _pred ( y , A , R ) ) >. ) ) |
| 21 |
1 20
|
sylib |
|- ( ch -> A. y e. A ( F ` y ) = ( G ` <. y , ( F |` _pred ( y , A , R ) ) >. ) ) |