Metamath Proof Explorer


Theorem bnj1529

Description: Technical lemma for bnj1522 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1529.1 χ x A F x = G x F pred x A R
bnj1529.2 w F x w F
Assertion bnj1529 χ y A F y = G y F pred y A R

Proof

Step Hyp Ref Expression
1 bnj1529.1 χ x A F x = G x F pred x A R
2 bnj1529.2 w F x w F
3 nfv y F x = G x F pred x A R
4 2 nfcii _ x F
5 nfcv _ x y
6 4 5 nffv _ x F y
7 nfcv _ x G
8 nfcv _ x pred y A R
9 4 8 nfres _ x F pred y A R
10 5 9 nfop _ x y F pred y A R
11 7 10 nffv _ x G y F pred y A R
12 6 11 nfeq x F y = G y F pred y A R
13 fveq2 x = y F x = F y
14 id x = y x = y
15 bnj602 x = y pred x A R = pred y A R
16 15 reseq2d x = y F pred x A R = F pred y A R
17 14 16 opeq12d x = y x F pred x A R = y F pred y A R
18 17 fveq2d x = y G x F pred x A R = G y F pred y A R
19 13 18 eqeq12d x = y F x = G x F pred x A R F y = G y F pred y A R
20 3 12 19 cbvralw x A F x = G x F pred x A R y A F y = G y F pred y A R
21 1 20 sylib χ y A F y = G y F pred y A R