| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1529.1 |
⊢ ( 𝜒 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 2 |
|
bnj1529.2 |
⊢ ( 𝑤 ∈ 𝐹 → ∀ 𝑥 𝑤 ∈ 𝐹 ) |
| 3 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) |
| 4 |
2
|
nfcii |
⊢ Ⅎ 𝑥 𝐹 |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 6 |
4 5
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐺 |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑥 pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 9 |
4 8
|
nfres |
⊢ Ⅎ 𝑥 ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 10 |
5 9
|
nfop |
⊢ Ⅎ 𝑥 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 |
| 11 |
7 10
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐺 ‘ 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) |
| 12 |
6 11
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) |
| 13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 14 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 15 |
|
bnj602 |
⊢ ( 𝑥 = 𝑦 → pred ( 𝑥 , 𝐴 , 𝑅 ) = pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 16 |
15
|
reseq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 17 |
14 16
|
opeq12d |
⊢ ( 𝑥 = 𝑦 → 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) |
| 18 |
17
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) = ( 𝐺 ‘ 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 19 |
13 18
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) ) ) |
| 20 |
3 12 19
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 21 |
1 20
|
sylib |
⊢ ( 𝜒 → ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) ) |