| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1523.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
| 2 |
|
bnj1523.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 3 |
|
bnj1523.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 4 |
|
bnj1523.4 |
⊢ 𝐹 = ∪ 𝐶 |
| 5 |
|
bnj1523.5 |
⊢ ( 𝜑 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ) |
| 6 |
|
bnj1523.6 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝐹 ≠ 𝐻 ) ) |
| 7 |
|
bnj1523.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) ) ) |
| 8 |
|
bnj1523.8 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) } |
| 9 |
|
bnj1523.9 |
⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝑦 ∈ 𝐷 ∧ ∀ 𝑧 ∈ 𝐷 ¬ 𝑧 𝑅 𝑦 ) ) |
| 10 |
1 2 3 4
|
bnj60 |
⊢ ( 𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴 ) |
| 11 |
5 10
|
bnj835 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 12 |
6 11
|
bnj832 |
⊢ ( 𝜓 → 𝐹 Fn 𝐴 ) |
| 13 |
7 12
|
bnj835 |
⊢ ( 𝜒 → 𝐹 Fn 𝐴 ) |
| 14 |
9 13
|
bnj835 |
⊢ ( 𝜃 → 𝐹 Fn 𝐴 ) |
| 15 |
5
|
simp2bi |
⊢ ( 𝜑 → 𝐻 Fn 𝐴 ) |
| 16 |
6 15
|
bnj832 |
⊢ ( 𝜓 → 𝐻 Fn 𝐴 ) |
| 17 |
7 16
|
bnj835 |
⊢ ( 𝜒 → 𝐻 Fn 𝐴 ) |
| 18 |
9 17
|
bnj835 |
⊢ ( 𝜃 → 𝐻 Fn 𝐴 ) |
| 19 |
|
bnj213 |
⊢ pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
| 20 |
19
|
a1i |
⊢ ( 𝜃 → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 ) |
| 21 |
9
|
simp3bi |
⊢ ( 𝜃 → ∀ 𝑧 ∈ 𝐷 ¬ 𝑧 𝑅 𝑦 ) |
| 22 |
21
|
bnj1211 |
⊢ ( 𝜃 → ∀ 𝑧 ( 𝑧 ∈ 𝐷 → ¬ 𝑧 𝑅 𝑦 ) ) |
| 23 |
|
con2b |
⊢ ( ( 𝑧 ∈ 𝐷 → ¬ 𝑧 𝑅 𝑦 ) ↔ ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ 𝐷 ) ) |
| 24 |
23
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝐷 → ¬ 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ 𝐷 ) ) |
| 25 |
22 24
|
sylib |
⊢ ( 𝜃 → ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ 𝐷 ) ) |
| 26 |
|
bnj1418 |
⊢ ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 𝑅 𝑦 ) |
| 27 |
26
|
imim1i |
⊢ ( ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ 𝐷 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → ¬ 𝑧 ∈ 𝐷 ) ) |
| 28 |
27
|
alimi |
⊢ ( ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ 𝐷 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → ¬ 𝑧 ∈ 𝐷 ) ) |
| 29 |
25 28
|
syl |
⊢ ( 𝜃 → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → ¬ 𝑧 ∈ 𝐷 ) ) |
| 30 |
29
|
bnj1142 |
⊢ ( 𝜃 → ∀ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ¬ 𝑧 ∈ 𝐷 ) |
| 31 |
1
|
bnj1309 |
⊢ ( 𝑤 ∈ 𝐵 → ∀ 𝑥 𝑤 ∈ 𝐵 ) |
| 32 |
3 31
|
bnj1307 |
⊢ ( 𝑤 ∈ 𝐶 → ∀ 𝑥 𝑤 ∈ 𝐶 ) |
| 33 |
32
|
nfcii |
⊢ Ⅎ 𝑥 𝐶 |
| 34 |
33
|
nfuni |
⊢ Ⅎ 𝑥 ∪ 𝐶 |
| 35 |
4 34
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
| 36 |
35
|
nfcrii |
⊢ ( 𝑤 ∈ 𝐹 → ∀ 𝑥 𝑤 ∈ 𝐹 ) |
| 37 |
8 36
|
bnj1534 |
⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐻 ‘ 𝑧 ) } |
| 38 |
30 19 37
|
bnj1533 |
⊢ ( 𝜃 → ∀ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ 𝑧 ) ) |
| 39 |
14 18 20 38
|
bnj1536 |
⊢ ( 𝜃 → ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) = ( 𝐻 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 40 |
39
|
opeq2d |
⊢ ( 𝜃 → 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑦 , ( 𝐻 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) |
| 41 |
40
|
fveq2d |
⊢ ( 𝜃 → ( 𝐺 ‘ 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) = ( 𝐺 ‘ 〈 𝑦 , ( 𝐻 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 42 |
1 2 3 4
|
bnj1500 |
⊢ ( 𝑅 FrSe 𝐴 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 43 |
5 42
|
bnj835 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 44 |
6 43
|
bnj832 |
⊢ ( 𝜓 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 45 |
7 44
|
bnj835 |
⊢ ( 𝜒 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 46 |
45 36
|
bnj1529 |
⊢ ( 𝜒 → ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 47 |
9 46
|
bnj835 |
⊢ ( 𝜃 → ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 48 |
8
|
ssrab3 |
⊢ 𝐷 ⊆ 𝐴 |
| 49 |
9
|
simp2bi |
⊢ ( 𝜃 → 𝑦 ∈ 𝐷 ) |
| 50 |
48 49
|
bnj1213 |
⊢ ( 𝜃 → 𝑦 ∈ 𝐴 ) |
| 51 |
47 50
|
bnj1294 |
⊢ ( 𝜃 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 〈 𝑦 , ( 𝐹 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 52 |
5
|
simp3bi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 53 |
6 52
|
bnj832 |
⊢ ( 𝜓 → ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 54 |
7 53
|
bnj835 |
⊢ ( 𝜒 → ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 55 |
|
ax-5 |
⊢ ( 𝑣 ∈ 𝐻 → ∀ 𝑥 𝑣 ∈ 𝐻 ) |
| 56 |
54 55
|
bnj1529 |
⊢ ( 𝜒 → ∀ 𝑦 ∈ 𝐴 ( 𝐻 ‘ 𝑦 ) = ( 𝐺 ‘ 〈 𝑦 , ( 𝐻 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 57 |
9 56
|
bnj835 |
⊢ ( 𝜃 → ∀ 𝑦 ∈ 𝐴 ( 𝐻 ‘ 𝑦 ) = ( 𝐺 ‘ 〈 𝑦 , ( 𝐻 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 58 |
57 50
|
bnj1294 |
⊢ ( 𝜃 → ( 𝐻 ‘ 𝑦 ) = ( 𝐺 ‘ 〈 𝑦 , ( 𝐻 ↾ pred ( 𝑦 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 59 |
41 51 58
|
3eqtr4d |
⊢ ( 𝜃 → ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 60 |
8 36
|
bnj1534 |
⊢ 𝐷 = { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐻 ‘ 𝑦 ) } |
| 61 |
60
|
bnj1538 |
⊢ ( 𝑦 ∈ 𝐷 → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐻 ‘ 𝑦 ) ) |
| 62 |
9 61
|
bnj836 |
⊢ ( 𝜃 → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐻 ‘ 𝑦 ) ) |
| 63 |
62
|
neneqd |
⊢ ( 𝜃 → ¬ ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 64 |
59 63
|
pm2.65i |
⊢ ¬ 𝜃 |
| 65 |
64
|
nex |
⊢ ¬ ∃ 𝑦 𝜃 |
| 66 |
5
|
simp1bi |
⊢ ( 𝜑 → 𝑅 FrSe 𝐴 ) |
| 67 |
6 66
|
bnj832 |
⊢ ( 𝜓 → 𝑅 FrSe 𝐴 ) |
| 68 |
7 67
|
bnj835 |
⊢ ( 𝜒 → 𝑅 FrSe 𝐴 ) |
| 69 |
48
|
a1i |
⊢ ( 𝜒 → 𝐷 ⊆ 𝐴 ) |
| 70 |
7
|
simp2bi |
⊢ ( 𝜒 → 𝑥 ∈ 𝐴 ) |
| 71 |
7
|
simp3bi |
⊢ ( 𝜒 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) ) |
| 72 |
8
|
reqabi |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) ) ) |
| 73 |
70 71 72
|
sylanbrc |
⊢ ( 𝜒 → 𝑥 ∈ 𝐷 ) |
| 74 |
73
|
ne0d |
⊢ ( 𝜒 → 𝐷 ≠ ∅ ) |
| 75 |
|
bnj69 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ 𝐷 ≠ ∅ ) → ∃ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝐷 ¬ 𝑧 𝑅 𝑦 ) |
| 76 |
68 69 74 75
|
syl3anc |
⊢ ( 𝜒 → ∃ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝐷 ¬ 𝑧 𝑅 𝑦 ) |
| 77 |
76 9
|
bnj1209 |
⊢ ( 𝜒 → ∃ 𝑦 𝜃 ) |
| 78 |
65 77
|
mto |
⊢ ¬ 𝜒 |
| 79 |
78
|
nex |
⊢ ¬ ∃ 𝑥 𝜒 |
| 80 |
6
|
simprbi |
⊢ ( 𝜓 → 𝐹 ≠ 𝐻 ) |
| 81 |
12 16 80 36
|
bnj1542 |
⊢ ( 𝜓 → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) ) |
| 82 |
1 2 3 4 5 6
|
bnj1525 |
⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) |
| 83 |
81 7 82
|
bnj1521 |
⊢ ( 𝜓 → ∃ 𝑥 𝜒 ) |
| 84 |
79 83
|
mto |
⊢ ¬ 𝜓 |
| 85 |
6 84
|
bnj1541 |
⊢ ( 𝜑 → 𝐹 = 𝐻 ) |
| 86 |
5 85
|
sylbir |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) → 𝐹 = 𝐻 ) |