| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj554.19 |
|- ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
| 2 |
|
bnj554.20 |
|- ( ze <-> ( i e. _om /\ suc i e. n /\ m = suc i ) ) |
| 3 |
|
bnj554.21 |
|- K = U_ y e. ( G ` i ) _pred ( y , A , R ) |
| 4 |
|
bnj554.22 |
|- L = U_ y e. ( G ` p ) _pred ( y , A , R ) |
| 5 |
|
bnj554.23 |
|- K = U_ y e. ( G ` i ) _pred ( y , A , R ) |
| 6 |
|
bnj554.24 |
|- L = U_ y e. ( G ` p ) _pred ( y , A , R ) |
| 7 |
1
|
bnj1254 |
|- ( et -> m = suc p ) |
| 8 |
2
|
simp3bi |
|- ( ze -> m = suc i ) |
| 9 |
|
simpr |
|- ( ( m = suc p /\ m = suc i ) -> m = suc i ) |
| 10 |
|
bnj551 |
|- ( ( m = suc p /\ m = suc i ) -> p = i ) |
| 11 |
|
fveq2 |
|- ( m = suc i -> ( G ` m ) = ( G ` suc i ) ) |
| 12 |
|
fveq2 |
|- ( p = i -> ( G ` p ) = ( G ` i ) ) |
| 13 |
|
iuneq1 |
|- ( ( G ` p ) = ( G ` i ) -> U_ y e. ( G ` p ) _pred ( y , A , R ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) |
| 14 |
13 6 5
|
3eqtr4g |
|- ( ( G ` p ) = ( G ` i ) -> L = K ) |
| 15 |
12 14
|
syl |
|- ( p = i -> L = K ) |
| 16 |
11 15
|
eqeqan12d |
|- ( ( m = suc i /\ p = i ) -> ( ( G ` m ) = L <-> ( G ` suc i ) = K ) ) |
| 17 |
9 10 16
|
syl2anc |
|- ( ( m = suc p /\ m = suc i ) -> ( ( G ` m ) = L <-> ( G ` suc i ) = K ) ) |
| 18 |
7 8 17
|
syl2an |
|- ( ( et /\ ze ) -> ( ( G ` m ) = L <-> ( G ` suc i ) = K ) ) |