| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							brcnvg | 
							 |-  ( ( B e. G /\ A e. F ) -> ( B `' C A <-> A C B ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							ancoms | 
							 |-  ( ( A e. F /\ B e. G ) -> ( B `' C A <-> A C B ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							biimp3ar | 
							 |-  ( ( A e. F /\ B e. G /\ A C B ) -> B `' C A )  | 
						
						
							| 4 | 
							
								
							 | 
							breldmg | 
							 |-  ( ( B e. G /\ A e. F /\ B `' C A ) -> B e. dom `' C )  | 
						
						
							| 5 | 
							
								4
							 | 
							3com12 | 
							 |-  ( ( A e. F /\ B e. G /\ B `' C A ) -> B e. dom `' C )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							syld3an3 | 
							 |-  ( ( A e. F /\ B e. G /\ A C B ) -> B e. dom `' C )  | 
						
						
							| 7 | 
							
								
							 | 
							df-rn | 
							 |-  ran C = dom `' C  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eleqtrrdi | 
							 |-  ( ( A e. F /\ B e. G /\ A C B ) -> B e. ran C )  |