| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvditgdavw2.1 |
|- ( ph -> A = B ) |
| 2 |
|
cbvditgdavw2.2 |
|- ( ph -> C = D ) |
| 3 |
|
cbvditgdavw2.3 |
|- ( ( ph /\ x = y ) -> E = F ) |
| 4 |
1 2
|
breq12d |
|- ( ph -> ( A <_ C <-> B <_ D ) ) |
| 5 |
1
|
adantr |
|- ( ( ph /\ x = y ) -> A = B ) |
| 6 |
2
|
adantr |
|- ( ( ph /\ x = y ) -> C = D ) |
| 7 |
5 6
|
oveq12d |
|- ( ( ph /\ x = y ) -> ( A (,) C ) = ( B (,) D ) ) |
| 8 |
3 7
|
cbvitgdavw2 |
|- ( ph -> S. ( A (,) C ) E _d x = S. ( B (,) D ) F _d y ) |
| 9 |
6 5
|
oveq12d |
|- ( ( ph /\ x = y ) -> ( C (,) A ) = ( D (,) B ) ) |
| 10 |
3 9
|
cbvitgdavw2 |
|- ( ph -> S. ( C (,) A ) E _d x = S. ( D (,) B ) F _d y ) |
| 11 |
10
|
negeqd |
|- ( ph -> -u S. ( C (,) A ) E _d x = -u S. ( D (,) B ) F _d y ) |
| 12 |
4 8 11
|
ifbieq12d |
|- ( ph -> if ( A <_ C , S. ( A (,) C ) E _d x , -u S. ( C (,) A ) E _d x ) = if ( B <_ D , S. ( B (,) D ) F _d y , -u S. ( D (,) B ) F _d y ) ) |
| 13 |
|
df-ditg |
|- S_ [ A -> C ] E _d x = if ( A <_ C , S. ( A (,) C ) E _d x , -u S. ( C (,) A ) E _d x ) |
| 14 |
|
df-ditg |
|- S_ [ B -> D ] F _d y = if ( B <_ D , S. ( B (,) D ) F _d y , -u S. ( D (,) B ) F _d y ) |
| 15 |
12 13 14
|
3eqtr4g |
|- ( ph -> S_ [ A -> C ] E _d x = S_ [ B -> D ] F _d y ) |