Metamath Proof Explorer


Theorem cbvditgdavw2

Description: Change bound variable and limits in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvditgdavw2.1
|- ( ph -> A = B )
cbvditgdavw2.2
|- ( ph -> C = D )
cbvditgdavw2.3
|- ( ( ph /\ x = y ) -> E = F )
Assertion cbvditgdavw2
|- ( ph -> S_ [ A -> C ] E _d x = S_ [ B -> D ] F _d y )

Proof

Step Hyp Ref Expression
1 cbvditgdavw2.1
 |-  ( ph -> A = B )
2 cbvditgdavw2.2
 |-  ( ph -> C = D )
3 cbvditgdavw2.3
 |-  ( ( ph /\ x = y ) -> E = F )
4 1 2 breq12d
 |-  ( ph -> ( A <_ C <-> B <_ D ) )
5 1 adantr
 |-  ( ( ph /\ x = y ) -> A = B )
6 2 adantr
 |-  ( ( ph /\ x = y ) -> C = D )
7 5 6 oveq12d
 |-  ( ( ph /\ x = y ) -> ( A (,) C ) = ( B (,) D ) )
8 3 7 cbvitgdavw2
 |-  ( ph -> S. ( A (,) C ) E _d x = S. ( B (,) D ) F _d y )
9 6 5 oveq12d
 |-  ( ( ph /\ x = y ) -> ( C (,) A ) = ( D (,) B ) )
10 3 9 cbvitgdavw2
 |-  ( ph -> S. ( C (,) A ) E _d x = S. ( D (,) B ) F _d y )
11 10 negeqd
 |-  ( ph -> -u S. ( C (,) A ) E _d x = -u S. ( D (,) B ) F _d y )
12 4 8 11 ifbieq12d
 |-  ( ph -> if ( A <_ C , S. ( A (,) C ) E _d x , -u S. ( C (,) A ) E _d x ) = if ( B <_ D , S. ( B (,) D ) F _d y , -u S. ( D (,) B ) F _d y ) )
13 df-ditg
 |-  S_ [ A -> C ] E _d x = if ( A <_ C , S. ( A (,) C ) E _d x , -u S. ( C (,) A ) E _d x )
14 df-ditg
 |-  S_ [ B -> D ] F _d y = if ( B <_ D , S. ( B (,) D ) F _d y , -u S. ( D (,) B ) F _d y )
15 12 13 14 3eqtr4g
 |-  ( ph -> S_ [ A -> C ] E _d x = S_ [ B -> D ] F _d y )