Metamath Proof Explorer


Theorem cbvditgdavw2

Description: Change bound variable and limits in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvditgdavw2.1 φ A = B
cbvditgdavw2.2 φ C = D
cbvditgdavw2.3 φ x = y E = F
Assertion cbvditgdavw2 φ A C E dx = B D F dy

Proof

Step Hyp Ref Expression
1 cbvditgdavw2.1 φ A = B
2 cbvditgdavw2.2 φ C = D
3 cbvditgdavw2.3 φ x = y E = F
4 1 2 breq12d φ A C B D
5 1 adantr φ x = y A = B
6 2 adantr φ x = y C = D
7 5 6 oveq12d φ x = y A C = B D
8 3 7 cbvitgdavw2 φ A C E dx = B D F dy
9 6 5 oveq12d φ x = y C A = D B
10 3 9 cbvitgdavw2 φ C A E dx = D B F dy
11 10 negeqd φ C A E dx = D B F dy
12 4 8 11 ifbieq12d φ if A C A C E dx C A E dx = if B D B D F dy D B F dy
13 df-ditg A C E dx = if A C A C E dx C A E dx
14 df-ditg B D F dy = if B D B D F dy D B F dy
15 12 13 14 3eqtr4g φ A C E dx = B D F dy