Step |
Hyp |
Ref |
Expression |
1 |
|
cbvditgdavw2.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
cbvditgdavw2.2 |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
3 |
|
cbvditgdavw2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐸 = 𝐹 ) |
4 |
1 2
|
breq12d |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐶 ↔ 𝐵 ≤ 𝐷 ) ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐶 = 𝐷 ) |
7 |
5 6
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝐴 (,) 𝐶 ) = ( 𝐵 (,) 𝐷 ) ) |
8 |
3 7
|
cbvitgdavw2 |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 = ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 ) |
9 |
6 5
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝐶 (,) 𝐴 ) = ( 𝐷 (,) 𝐵 ) ) |
10 |
3 9
|
cbvitgdavw2 |
⊢ ( 𝜑 → ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 = ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 ) |
11 |
10
|
negeqd |
⊢ ( 𝜑 → - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 = - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 ) |
12 |
4 8 11
|
ifbieq12d |
⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 ) = if ( 𝐵 ≤ 𝐷 , ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 , - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 ) ) |
13 |
|
df-ditg |
⊢ ⨜ [ 𝐴 → 𝐶 ] 𝐸 d 𝑥 = if ( 𝐴 ≤ 𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 ) |
14 |
|
df-ditg |
⊢ ⨜ [ 𝐵 → 𝐷 ] 𝐹 d 𝑦 = if ( 𝐵 ≤ 𝐷 , ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 , - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 ) |
15 |
12 13 14
|
3eqtr4g |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵 → 𝐷 ] 𝐹 d 𝑦 ) |