| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvditgdavw2.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 2 |
|
cbvditgdavw2.2 |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
| 3 |
|
cbvditgdavw2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐸 = 𝐹 ) |
| 4 |
1 2
|
breq12d |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐶 ↔ 𝐵 ≤ 𝐷 ) ) |
| 5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) |
| 6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐶 = 𝐷 ) |
| 7 |
5 6
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝐴 (,) 𝐶 ) = ( 𝐵 (,) 𝐷 ) ) |
| 8 |
3 7
|
cbvitgdavw2 |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 = ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 ) |
| 9 |
6 5
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝐶 (,) 𝐴 ) = ( 𝐷 (,) 𝐵 ) ) |
| 10 |
3 9
|
cbvitgdavw2 |
⊢ ( 𝜑 → ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 = ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 ) |
| 11 |
10
|
negeqd |
⊢ ( 𝜑 → - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 = - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 ) |
| 12 |
4 8 11
|
ifbieq12d |
⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 ) = if ( 𝐵 ≤ 𝐷 , ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 , - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 ) ) |
| 13 |
|
df-ditg |
⊢ ⨜ [ 𝐴 → 𝐶 ] 𝐸 d 𝑥 = if ( 𝐴 ≤ 𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 ) |
| 14 |
|
df-ditg |
⊢ ⨜ [ 𝐵 → 𝐷 ] 𝐹 d 𝑦 = if ( 𝐵 ≤ 𝐷 , ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 , - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 ) |
| 15 |
12 13 14
|
3eqtr4g |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵 → 𝐷 ] 𝐹 d 𝑦 ) |