Metamath Proof Explorer


Theorem cbvditgdavw2

Description: Change bound variable and limits in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvditgdavw2.1 ( 𝜑𝐴 = 𝐵 )
cbvditgdavw2.2 ( 𝜑𝐶 = 𝐷 )
cbvditgdavw2.3 ( ( 𝜑𝑥 = 𝑦 ) → 𝐸 = 𝐹 )
Assertion cbvditgdavw2 ( 𝜑 → ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐷 ] 𝐹 d 𝑦 )

Proof

Step Hyp Ref Expression
1 cbvditgdavw2.1 ( 𝜑𝐴 = 𝐵 )
2 cbvditgdavw2.2 ( 𝜑𝐶 = 𝐷 )
3 cbvditgdavw2.3 ( ( 𝜑𝑥 = 𝑦 ) → 𝐸 = 𝐹 )
4 1 2 breq12d ( 𝜑 → ( 𝐴𝐶𝐵𝐷 ) )
5 1 adantr ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
6 2 adantr ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
7 5 6 oveq12d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝐴 (,) 𝐶 ) = ( 𝐵 (,) 𝐷 ) )
8 3 7 cbvitgdavw2 ( 𝜑 → ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 = ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 )
9 6 5 oveq12d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝐶 (,) 𝐴 ) = ( 𝐷 (,) 𝐵 ) )
10 3 9 cbvitgdavw2 ( 𝜑 → ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 = ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 )
11 10 negeqd ( 𝜑 → - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 = - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 )
12 4 8 11 ifbieq12d ( 𝜑 → if ( 𝐴𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 ) = if ( 𝐵𝐷 , ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 , - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 ) )
13 df-ditg ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = if ( 𝐴𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 )
14 df-ditg ⨜ [ 𝐵𝐷 ] 𝐹 d 𝑦 = if ( 𝐵𝐷 , ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 , - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 )
15 12 13 14 3eqtr4g ( 𝜑 → ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐷 ] 𝐹 d 𝑦 )