Metamath Proof Explorer


Theorem cbvitgdavw2

Description: Change bound variable and domain in an integral. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvitgdavw2.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
cbvitgdavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
Assertion cbvitgdavw2 ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐷 d 𝑦 )

Proof

Step Hyp Ref Expression
1 cbvitgdavw2.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
2 cbvitgdavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
3 1 fvoveq1d ( ( 𝜑𝑥 = 𝑦 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑡 ) ) ) )
4 simpr ( ( 𝜑𝑥 = 𝑦 ) → 𝑥 = 𝑦 )
5 4 2 eleq12d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑥𝐴𝑦𝐵 ) )
6 5 anbi1d ( ( 𝜑𝑥 = 𝑦 ) → ( ( 𝑥𝐴 ∧ 0 ≤ 𝑣 ) ↔ ( 𝑦𝐵 ∧ 0 ≤ 𝑣 ) ) )
7 6 ifbid ( ( 𝜑𝑥 = 𝑦 ) → if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) = if ( ( 𝑦𝐵 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) )
8 3 7 csbeq12dv ( ( 𝜑𝑥 = 𝑦 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) / 𝑣 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑡 ) ) ) / 𝑣 if ( ( 𝑦𝐵 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) )
9 8 cbvmptdavw ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) / 𝑣 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) = ( 𝑦 ∈ ℝ ↦ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑡 ) ) ) / 𝑣 if ( ( 𝑦𝐵 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) )
10 9 fveq2d ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) / 𝑣 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) = ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑡 ) ) ) / 𝑣 if ( ( 𝑦𝐵 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) )
11 10 oveq2d ( 𝜑 → ( ( i ↑ 𝑡 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) / 𝑣 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) = ( ( i ↑ 𝑡 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑡 ) ) ) / 𝑣 if ( ( 𝑦𝐵 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) )
12 11 sumeq2sdv ( 𝜑 → Σ 𝑡 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑡 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) / 𝑣 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) = Σ 𝑡 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑡 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑡 ) ) ) / 𝑣 if ( ( 𝑦𝐵 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) )
13 df-itg 𝐴 𝐶 d 𝑥 = Σ 𝑡 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑡 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) / 𝑣 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) )
14 df-itg 𝐵 𝐷 d 𝑦 = Σ 𝑡 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑡 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑡 ) ) ) / 𝑣 if ( ( 𝑦𝐵 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) )
15 12 13 14 3eqtr4g ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐷 d 𝑦 )