Step |
Hyp |
Ref |
Expression |
1 |
|
cbvoprab2davw.1 |
|- ( ( ph /\ y = w ) -> ( ps <-> ch ) ) |
2 |
|
opeq2 |
|- ( y = w -> <. x , y >. = <. x , w >. ) |
3 |
2
|
adantl |
|- ( ( ph /\ y = w ) -> <. x , y >. = <. x , w >. ) |
4 |
3
|
opeq1d |
|- ( ( ph /\ y = w ) -> <. <. x , y >. , z >. = <. <. x , w >. , z >. ) |
5 |
4
|
eqeq2d |
|- ( ( ph /\ y = w ) -> ( t = <. <. x , y >. , z >. <-> t = <. <. x , w >. , z >. ) ) |
6 |
5 1
|
anbi12d |
|- ( ( ph /\ y = w ) -> ( ( t = <. <. x , y >. , z >. /\ ps ) <-> ( t = <. <. x , w >. , z >. /\ ch ) ) ) |
7 |
6
|
exbidv |
|- ( ( ph /\ y = w ) -> ( E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. z ( t = <. <. x , w >. , z >. /\ ch ) ) ) |
8 |
7
|
cbvexdvaw |
|- ( ph -> ( E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. w E. z ( t = <. <. x , w >. , z >. /\ ch ) ) ) |
9 |
8
|
exbidv |
|- ( ph -> ( E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. x E. w E. z ( t = <. <. x , w >. , z >. /\ ch ) ) ) |
10 |
9
|
abbidv |
|- ( ph -> { t | E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) } = { t | E. x E. w E. z ( t = <. <. x , w >. , z >. /\ ch ) } ) |
11 |
|
df-oprab |
|- { <. <. x , y >. , z >. | ps } = { t | E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) } |
12 |
|
df-oprab |
|- { <. <. x , w >. , z >. | ch } = { t | E. x E. w E. z ( t = <. <. x , w >. , z >. /\ ch ) } |
13 |
10 11 12
|
3eqtr4g |
|- ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , w >. , z >. | ch } ) |