| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdv |
|- ( A e. Word V -> A e. Word _V ) |
| 2 |
|
s1cli |
|- <" X "> e. Word _V |
| 3 |
2
|
a1i |
|- ( X e. U -> <" X "> e. Word _V ) |
| 4 |
|
ccatalpha |
|- ( ( A e. Word _V /\ <" X "> e. Word _V ) -> ( ( A ++ <" X "> ) e. Word S <-> ( A e. Word S /\ <" X "> e. Word S ) ) ) |
| 5 |
1 3 4
|
syl2an |
|- ( ( A e. Word V /\ X e. U ) -> ( ( A ++ <" X "> ) e. Word S <-> ( A e. Word S /\ <" X "> e. Word S ) ) ) |
| 6 |
|
simpr |
|- ( ( X e. U /\ <" X "> e. Word S ) -> <" X "> e. Word S ) |
| 7 |
|
s1len |
|- ( # ` <" X "> ) = 1 |
| 8 |
|
wrdl1exs1 |
|- ( ( <" X "> e. Word S /\ ( # ` <" X "> ) = 1 ) -> E. w e. S <" X "> = <" w "> ) |
| 9 |
6 7 8
|
sylancl |
|- ( ( X e. U /\ <" X "> e. Word S ) -> E. w e. S <" X "> = <" w "> ) |
| 10 |
|
elex |
|- ( X e. U -> X e. _V ) |
| 11 |
10
|
adantr |
|- ( ( X e. U /\ <" X "> e. Word S ) -> X e. _V ) |
| 12 |
|
elex |
|- ( w e. S -> w e. _V ) |
| 13 |
|
s111 |
|- ( ( X e. _V /\ w e. _V ) -> ( <" X "> = <" w "> <-> X = w ) ) |
| 14 |
11 12 13
|
syl2an |
|- ( ( ( X e. U /\ <" X "> e. Word S ) /\ w e. S ) -> ( <" X "> = <" w "> <-> X = w ) ) |
| 15 |
|
simpr |
|- ( ( ( X e. U /\ <" X "> e. Word S ) /\ w e. S ) -> w e. S ) |
| 16 |
|
eleq1 |
|- ( X = w -> ( X e. S <-> w e. S ) ) |
| 17 |
15 16
|
syl5ibrcom |
|- ( ( ( X e. U /\ <" X "> e. Word S ) /\ w e. S ) -> ( X = w -> X e. S ) ) |
| 18 |
14 17
|
sylbid |
|- ( ( ( X e. U /\ <" X "> e. Word S ) /\ w e. S ) -> ( <" X "> = <" w "> -> X e. S ) ) |
| 19 |
18
|
rexlimdva |
|- ( ( X e. U /\ <" X "> e. Word S ) -> ( E. w e. S <" X "> = <" w "> -> X e. S ) ) |
| 20 |
9 19
|
mpd |
|- ( ( X e. U /\ <" X "> e. Word S ) -> X e. S ) |
| 21 |
20
|
ex |
|- ( X e. U -> ( <" X "> e. Word S -> X e. S ) ) |
| 22 |
|
s1cl |
|- ( X e. S -> <" X "> e. Word S ) |
| 23 |
21 22
|
impbid1 |
|- ( X e. U -> ( <" X "> e. Word S <-> X e. S ) ) |
| 24 |
23
|
anbi2d |
|- ( X e. U -> ( ( A e. Word S /\ <" X "> e. Word S ) <-> ( A e. Word S /\ X e. S ) ) ) |
| 25 |
24
|
adantl |
|- ( ( A e. Word V /\ X e. U ) -> ( ( A e. Word S /\ <" X "> e. Word S ) <-> ( A e. Word S /\ X e. S ) ) ) |
| 26 |
5 25
|
bitrd |
|- ( ( A e. Word V /\ X e. U ) -> ( ( A ++ <" X "> ) e. Word S <-> ( A e. Word S /\ X e. S ) ) ) |