Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemef50.b |
|- B = ( Base ` K ) |
2 |
|
cdlemef50.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemef50.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemef50.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemef50.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemef50.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemef50.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdlemef50.d |
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
9 |
|
cdlemefs50.e |
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) ) |
10 |
|
cdlemef50.f |
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) |
11 |
|
riotaex |
|- ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) e. _V |
12 |
|
vex |
|- x e. _V |
13 |
11 12
|
ifex |
|- if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) e. _V |
14 |
13
|
a1i |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. B ) -> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) e. _V ) |
15 |
10
|
a1i |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) ) |
16 |
|
vex |
|- s e. _V |
17 |
|
eqid |
|- ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
18 |
8 17
|
cdleme31sc |
|- ( s e. _V -> [_ s / t ]_ D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) ) |
19 |
16 18
|
ax-mp |
|- [_ s / t ]_ D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
20 |
|
eqid |
|- ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) |
21 |
|
eqid |
|- if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) = if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) |
22 |
|
eqid |
|- ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) |
23 |
1 2 3 4 5 6 7 19 8 9 20 21 22 10
|
cdleme32fvcl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ e e. B ) -> ( F ` e ) e. B ) |
24 |
14 15 23
|
fmpt2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F : B --> B ) |