Metamath Proof Explorer


Theorem cdleme50f

Description: Part of proof of Lemma D in Crawley p. 113. TODO: fix comment. TODO: can we use just F Fn B since range is computed in cdleme50rn ? (Contributed by NM, 9-Apr-2013)

Ref Expression
Hypotheses cdlemef50.b B=BaseK
cdlemef50.l ˙=K
cdlemef50.j ˙=joinK
cdlemef50.m ˙=meetK
cdlemef50.a A=AtomsK
cdlemef50.h H=LHypK
cdlemef50.u U=P˙Q˙W
cdlemef50.d D=t˙U˙Q˙P˙t˙W
cdlemefs50.e E=P˙Q˙D˙s˙t˙W
cdlemef50.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
Assertion cdleme50f KHLWHPA¬P˙WQA¬Q˙WF:BB

Proof

Step Hyp Ref Expression
1 cdlemef50.b B=BaseK
2 cdlemef50.l ˙=K
3 cdlemef50.j ˙=joinK
4 cdlemef50.m ˙=meetK
5 cdlemef50.a A=AtomsK
6 cdlemef50.h H=LHypK
7 cdlemef50.u U=P˙Q˙W
8 cdlemef50.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs50.e E=P˙Q˙D˙s˙t˙W
10 cdlemef50.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 riotaex ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙WV
12 vex xV
13 11 12 ifex ifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙WxV
14 13 a1i KHLWHPA¬P˙WQA¬Q˙WxBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙WxV
15 10 a1i KHLWHPA¬P˙WQA¬Q˙WF=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
16 vex sV
17 eqid s˙U˙Q˙P˙s˙W=s˙U˙Q˙P˙s˙W
18 8 17 cdleme31sc sVs/tD=s˙U˙Q˙P˙s˙W
19 16 18 ax-mp s/tD=s˙U˙Q˙P˙s˙W
20 eqid ιyB|tA¬t˙W¬t˙P˙Qy=E=ιyB|tA¬t˙W¬t˙P˙Qy=E
21 eqid ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD
22 eqid ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W=ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W
23 1 2 3 4 5 6 7 19 8 9 20 21 22 10 cdleme32fvcl KHLWHPA¬P˙WQA¬Q˙WeBFeB
24 14 15 23 fmpt2d KHLWHPA¬P˙WQA¬Q˙WF:BB